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Preface

The material in this book has been put together from the many operating
manuals and system descriptions published by the various manufacturers mentioned
in this book. And, in many cases, the complete latest schematic revision of the par-
ticular board described has been included for handy reference. In total, this book
is intended to serve as a quick, handy compendium of technical information about
S-100 bus equipment. And, although some companies have changed names, been
acquired by others, or closed their doors, many thousands of their boards are in the
field, and this book will be one of the few places that data will be available.

The boards covered in this book span a wide range of functions, and although
it would be impossible to cover every manufacturer's product in a single book, the
equipment described here is representative of the many other products that are avail-
able. Companies such as MITS and IMSAI were the pioneers in the field of "per-
sonal" computing, which has now opened up to an extremely large assortment of
low-cost completely assembled systems, some using the S-100 bus and others using
proprietary bus structures.

However, another controversy covered in this book is that of just what is
the S-100 bus. MITS introduced the original version of it on their Altair 8800 micro-
computer system, revised it for the 8800b system and then developed an entirely new
structure. The pin definitions picked by Imsai were very similar to those of MITS,
but there were some differences-differences that make some of the boards that
operate in one system incompatible on the other system. For future S-100 bus sys-
tems, many of the incompatibility problems should be eliminated as the "standard"
for S-100 bus systems that has been developed by a committee of IEEE (Institute
of Electrical and Electronic Engineers) becomes widely adopted. Included in Ap-
pendix D is a summary of the new standard, including a listing of all the pins and
their definitions.

Not only will this book serve as a handy compendium of information about
the boards, but it will serve as a simple guide to troubleshooting some of the basic
simple system failures beyond "it doesn't work." Detailed troubleshooting infor-
mation would require a book on each type of board, so the material included here
will just help track down the problem to a defective board, system component, or
program.

I would just like to add a word of thanks to all the microcomputer manu-
facturers that helped me put this material together and hope that for you, the user,
it serves its intended purpose.

DAVE BURSKY
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CHAPTER 1

Basic Introduction to Computers
and Microprocessors

So you want to use a computer. But just buying one
and reading the instruction and operating manuals will
not get you very far, especially if you're not familiar with
programming or electronics.

By itself, a computer is nothing more than a collec-
tion of electronic circuits arranged to process informa-
tion that is fed into it. In addition to all the electronics,
therefore, a computer requires some sort of language to
communicate back and forth with the operator-you.
Such a language consists of a stable of commands that
can be combined in various ways to make the computer
do almost anything-solve business problems, simulate
speech, play music, play games, or even solve mathe-
matical equations.

A Little Computer Prehistory

Ever since man started counting on his hands and
toes, he has been trying to find easier and faster ways
to do everything. The Chinese abacus, developed before
2000 B.C., was one of the first calculating machines
(Fig. 1.1). It could add, subtract, multiply, and divide
under the skillful control of an operator. And even
today, if you were to go into the Chinese community
of any sizable city you would probably find some shop-
keepers still using the abacus to do their bookkeeping.

Fig. 1.1 The Chinese abacus, one of the first of man's
calculating machines, is still in use today.

Early Western civilization, though, struggled along
without such a handy device. Moreover, it had to make
do with the numbering system devised by the Romans-
what today we call Roman numerals:

I=1, V=5, X= 10,

C = 100, and M = 1000

It wasn't until the thirteenth and fourteenth centuries
that the decimal system of Arabic numerals we use
today-0, 1, 2, 3, 4, 5, 6, 7, 8, and 9-came into wide-
spread use. Except for the zero, the numbering system
dates back to about the fifth century. However, the idea
of a placeholder, the zero, was not developed until about
the ninth or tenth century.

Today, the decimal numbering system is used
throughout the world as a common mathematical tool.
However, most computers don't operate with decimal
numbers-they use one of the forms of binary number
representations to perform their operations. We'll talk
more about numbering systems and how they work in
the next chapter.

It wasn't until the seventeenth century that modern
computing devices began to take shape. Two of Eu-
rope's top philosopher-scientists-Blaise Pascal and
Gottfried von Leibnitz-improved on some basic math-
ematical concepts in a way that made some crude cal-
culators possible (crude, that is, by today's standards).

Pascal's contribution was to increase our under-
standing of the carry and borrow operations used in
addition and subtraction. About the middle of the
seventeenth century he developed an adding machine
(Fig. 1.2a) that could perform all four basic functions-
addition, subtraction, multiplication, and division by
means of notched wheels interconnected by gears. Each
wheel had ten notches, and after every complete rota-
tion of a lower wheel the next higher wheel would move
ahead one notch. Multiplication consisted of nothing
more than repeated additions, and division of nothing
more than repeated subtractions. Most electric and gas
meters used by the utilities today use the same principle
to calculate power usage.

1
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(A)

(B)

Fig. 1.2 The first crude calculator, "Pascal's Machine
Arithmetique," was developed in the seventeenth
century (a). During the nineteenth century, Babbage
conceived a fully automatic calculating machine he
called an analytical engine (b). It used punched cards
to feed in the information.

Leibnitz improved on Pascal's machine by develop-
ing a way to do multiplication directly. The principle
of his machine, called a stepped reckoner, was used in
many electromechanical calculators until the 1960s. Of
course, both Pascal's and Leibnitz's machines had to
be manually operated; someone had to feed in the num-
bers and turn the crank for each operation.

About 200 years had to pass before Charles Bab-
bage conceived of a fully automatic calculating ma-

chine-he called it the analytical engine (Fig. 1.2b).
Unfortunately, his machine was too complex for the
metal-working technology of the early 1800s, and it was
never built. Babbage's concept of the analytical engine
also fostered the idea of using punched cards to feed
information (both instructions and data) into a machine
for processing. Many computer installations still use
Babbage's punched-card concept for entering programs
and data.

While Babbage's idea remained sidelined, another
mathematician, George Boole, developed a theory of
logical algebra (what today engineers refer to as Boolean
algebra) that has served as the basis for all modern
computer theory. A lot of other developments had to
take place, however, before modern computers could
even be imagined.

Electricity was still the experimenter's parlor toy
in the nineteenth century, and the theory of electricity
had yet to be formulated. Once it had been, the great
cataclysms of the twentieth century's two World Wars
brought forth many advances in electrical machinery
and computing devices. Not long after the end of World
War II, several large computing machines were devel-
oped by researchers at Harvard and the University of
Pennsylvania-the Mark I at Harvard, and ENIAC at
the University of Pennsylvania.

By today's standards, ENIAC (only 30 years old)
was a very primitive machine (Fig. 1.3). It used 18,000
vacuum tubes, weighed more than 30 tons, consumed
130,000 watts, and performed only 5000 operations per
second. Modern programmable pocket calculators that
can store instructions on magnetic cards have as much
capability as did ENIAC.

While scientists struggled to keep ENIAC running,
researchers at Bell Labs refined the principles of semi-
conducting materials. By the early 1950s semiconduc-
tors-transistors started to replace vacuum tubes in
many applications. They not only offered almost unlim-
ited life compared to that of vacuum tubes, but were
only a fraction the size.

Fig. 1.3 World War II spurred scientists at the Univer-
sity of Pennsylvania to develop the first digital com-
puter-ENIAC. (Courtesy Sperry Univac)
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Fig.1.4 Containing all the major logic sections that makeup a computer, the 8048 microcomputer developed by Intel is built into a chip
of silicon less than a quarter of an inch on a side. (Courtesy Intel)

Use of these semiconductor materials-germanium

and silicon-to build miniaturized systems allowed

designers to build machines that required a fraction

of the power, were only a fraction the size, and only a
small percentage of the weight of ENIAC. The transis-

tor indeed marked the turning point of modern com-

puter design.

But even since the invention of the transistor there
have been major advances. In 1958, several companies

managed to combine several transistors and some other
components within a single tiny chip of silicon. These
all-solid-state circuits, now referred to as monolithic
integrated circuits, have reduced the number of actual
components needed to build a computer system to a
mere handful. As a matter of fact, today's technology
has already made possible the complete computer on a
single chip of silicon only 0.25 in. on a side (Fig. 1.4).
The chip contains about 40,000 transistors and requires
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data and instructions. Boolean algebra can thus be used
to express many of the processes of computer systems
since it is a form of logic reasoning involving two states:
truth and untruth.

The ability of a computer to perform logic and math
operations rapidly is its only strength. In logic, all state-
ments must be either true or false; there are no inter-
mediate conditions such as "maybe."

The binary numbering system provides us with just
the right symbols to work with, and we will adopt them
as a standard for the rest of the book. For a true logic
statement, the binary value of I will be assigned, and for
an untrue statement, a value of 0. Thus, a statement can
equal I or 0 but it cannot have any other value (that is, it
must be either true or false). Electronic circuits adapt
easily to this system because only two voltages are needed
and they can be as simple as ground (nothing, or 0 V) and
some level V (which can be positive or negative). The true
or false representation can be turned into an on and off
equivalent for electronic circuits. Thus, when the circuit
is turned on the statement could be true, and when the
circuit is turned off the statement could be false. Depend-
ing on the type of logic circuits used, the positive level or
ground could just as easily represent the true statement
or the false statement.

Either statement standing by itself is of little logical
interest. A statement has a truth value of 1 or 0, and that's
all. However, when several statements are grouped to-
gether, other logical inferences can be developed. The
three basic logic operators-AND, OR, and NOT-
help connect statements so that conclusions can be
drawn.

Using Logic Operators

The AND operator can be used to connect any num-
ber of logic statements, all of which must be true for the
conclusion to be true. For instance, suppose a friend
tells you that on Saturday you will find him at the park
if the weather is good AND he has the day off from work.
This remark can be written as a logic equation by using
symbols: Let A represent the statement that the weather
is good, B the statement that he has the day off from
work, and C that you will find him at the park. There-
fore, if A AND B then C.

Writing out an entire logic operation is often not
necessary; a shorthand notation can be used. Sometimes
the multiply dot • in the middle of a line is used to repre-
sent the AND function, and other times the dot is omitted
and the individual letters are placed next to each other:

if A • B then C; if AB then C

Each of the two statements A and B can be either
true or false. If true, we assign the statement a value of
1, if false, a value of 0. The statements can be tabulated
to show all four possible combinations and the possible
outcomes:

Statement A Statement B Outcome (A • B)

0 0 0
0 1 0
1 0 0
1 1 1

This type of listing is called a truth table since it
shows every possible combination of the two statements.

The OR operator can also be used to connect any
number of logic statements. However, unlike operations
with the AND operator, only one statement of all those
connected need be true for the outcome to be true. Let's
use the same example we used for the AND operator but
modify it slightly: A friend tells you that on Saturday you
will find him at the park if the weather is good OR he has
the day off from work.

We can write this statement in the form of a logic
equation if we use the plus symbol + to represent the
logic OR operation. Thus, if A + B then C. Whenever A
or B is true, or they are both true, the outcome is true.
Again, this can be shown in truth-table form very simply:

Statement A Statement B Outcome (A + B)

0 0 0
0 1 1

0
I 1 1

The only time your friend won 't be at the park will
be if the weather is not good AND he doesn't have the
day off from work.

The last basic logic operator , the NOT function, can
be used to invert or complement a logic statement. It is
usually symbolized in shorthand by an overscore of the
logic statement or statements you want to invert. Let's
see how the logic statements used for the AND and OR
operators can be rewritten.

The statement A refers to the fact that "the weather
is nice"; therefore , A represents the statement that "the
weather is not nice ." Similarly, B represents the state-
ment that "he has the day off from work ," and B means
that "he does not have the day off from work." Since A
is represented by the binary 1, A would then be binary 0
(A = 1, A = 0). Common pronunciations of A are "not A"
and "A bar ," although you may run across others. The
truth table for the NOT function is very simple since it
operates on one item at a time:

A A

0 1
1 0

Each of the logic operators has a physical equivalent
that you might find easy to relate to. The simplest ex-
ample is probably the common water faucet. If you take
a look at your kitchen sink, you'll probably see some-
thing like the arrangement shown in Fig. 2.1. On top of
the sink are two faucets (call them A and C) and a com-
mon spout. Under the sink you'll find two valves (call
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Fig.1.4 Containing all the major logic sections that makeup a computer, the 8048 microcomputer developed by Intel is built into a chip
of silicon less than a quarter of an inch on a side. (Courtesy Intel)

Use of these semiconductor materials germanium
and silicon-to build miniaturized systems allowed
designers to build machines that required a fraction
of the power, were only a fraction the size, and only a
small percentage of the weight of ENIAC. The transis-
tor indeed marked the turning point of modern com-
puter design.

But even since the invention of the transistor there
have been major advances. In 1958, several companies

managed to combine several transistors and some other
components within a single tiny chip of silicon. These
all-solid-state circuits, now referred to as monolithic
integrated circuits, have reduced the number of actual
components needed to build a computer system to a
mere handful. As a matter of fact, today's technology
has already made possible the complete computer on a
single chip of silicon only 0.25 in. on a side (Fig. 1.4).
The chip contains about 40,000 transistors and requires
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Fig. 1.4 (cont 'd) Containing all the major logic sections that make up a computer, the 8048 microcomputer developed by Intel is built
into a chip of silicon less than a quarter of an inch on a side. (Courtesy Intel)

less power than even one of the vacuum tubes used in
ENIAC. And modern technology is striving to improve
on this circuit another two years will see up to 100,000
transistors on a single chip of silicon.

What Is a Computer?

Basically, any device can be called a computer that,
once given instructions and information to process,
proceeds to carry out those instructions. Human beings
are forms of highly complex computers, too. Each of us
can accept many types of data through our senses, and,
based on our earlier experiences and learning (program-
ming), can react to solve the problem posed. However,
there is one major difference between mechanical and
human computers: Human "computers" are capable of
taking original action without instructions; mechanical
computers can only do what they are instructed to do

and cannot modify what they are doing without follow-
ing a preordained procedure.

Modern computers can be split into two basic fam-
ilies: analog and digital. The analog computer works
with signals that are continuous. By continuous, we
mean signals that can take on an infinite number of
values between two points, as shown in Fig. 1.5. Analog
computers must know the value of these signals, or at
least how a signal compares to the other signals also
being used as information.

Conversely, digital computers work on discrete,
discontinuous numerical values, such as those shown
in Fig. 1.6. Currency offers a good example of such
"discrete" values. The amount of money you pay for a
candy bar is a digital quantity-say, between 0 and $1.
Since only 100 discrete amounts (cents) exist between
these limits, the change from one value to the next is
discontinuous. But, since digital computers don't care
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Fig 1.5 Analog signals can take on an infinite number
of values between two points on the graph.

W
J

TIME

Fig 1.6 Digital signals are represented by discrete,
discontinuous numerical values that can appear as
steps on a graph.

whether one value is larger than another, a simple way
to represent an amount had to be found. More about
computer numbering systems and information repre-
sentation will be presented in the next chapter.

Since this book deals with the use and circuit design
of digital computer systems, the rest of the discussions
pertain to digital computer systems only. (If you're
interested in finding out more about analog computers,
see the references in Appendix A.) Digital machines
perform arithmetic operations and can make logic
decisions based on instructions fed into the machine.
Therefore, basic computer mathematics includes the
operations of addition, subtraction, multiplication, and
division, as well as logic operations such as AND, OR,
NAND, NOR, Exclusive-OR (XOR), etc. (More about
these functions later in the book.)

No two digital computers are identical, especially
if you look inside. You can give them the same com-
mands and the same data and, in all probability, get the
same answers. But inside, each machine handles the
information in a different way. The internal organiza-
tion of a computer is often referred to as the machine's
"architecture." All computers can, at least for the sake
of analysis, be broken into five basic building blocks:
an input section, a memory section, a control section,
an arithmetic and logic section, and an output section.
A typical interconnection diagram of these building
blocks is shown in Fig. 1.7.

The input part of the computer is often some man-
ually operated device similar to a typewriter, but it
could just as easily be a magnetic tape reader or a

INPUT/
OUTPUT

ARITHMETIC
^CONTROL AND LOGIC

MEMORY

Fig. 1.7 Any computer system can be broken down
into several basic building blocks.

punched tape reader or any of the many other types of
input devices. Part of the input system's job is to trans-
late the information prepared by the operator into a
form the computer can digest.

Once information has been converted into digital
signals, it is usually fed into the memory section of the
computer, where it is stored until needed. The memory
section also holds the instructions and often the basic
operating procedures of the computer itself. Computer
memory devices include such units as magnetic tapes,
magnetic discs (mass storage devices), ferrite cores, and
semiconductor circuits called flip-flops, RAMs, or
ROMs.

To coordinate all the operations of the computer,
the control section selects information and instructions
from a storage location in memory in the proper se-
quence and lets it flow to the proper section for process-
ing. The control section is the decision-making element
of any computer. Inside an actual machine, however,
the control circuits are actually spread out through the
entire machine and are not grouped together as shown
in Fig. 1.7.

The actual processing is done by the arithmetic and
logic section of the computer. In this section, digital
information can be manipulated, analyzed, and re-
arranged under the direction of the control unit.

Once the information has been processed, it is often
fed back into the memory before you see the answer.
Under the direction of the control section, the answers
are delivered to you by means of some output device
in some cases, the same machine that you entered the
instructions into, and, in other cases, possibly a printer,
a tv screen, or a magnetic-tape recorder.

Of course, there are several parts of the computer
that we've skipped over for the moment-the power
supply, the front panel, and the cabinet. However, these
sections are much like the "dressing" on a cake. They
must be there, but all you have to know is that they're
there and they do their work. Some operations of the
front control panel will be discussed in a later chapter.

Often, the various sections of the computer are
built on separate circuit cards and then the cards are
connected together. The cards described in the follow-
ing chapters are all identical in physical size-5 in. X
10 in.-and have an edge connector on them that per-
mits up to 100 connections to the circuitry on the card
(Fig. 1.8). In a computer, many of these cards are inter-
connected by a wiring scheme called a bus -a common
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group of wires over which signals from all the boards
can be transmitted.

The computers and cards discussed in this book all
use the same bus structure, commonly referred to as the
S-100 bus. This bus was originated by MITS, when the
company introduced the Altair 8800-the first personal
computer-back in 1975. Since then over 50 companies
have adopted the same interconnect bus and offer a
wide variety of computer cards that connect to the bus.
The computers discussed in this book, the Altair 8800b
from MITS and the Imsai 8080 from Imsai Manufac-
turing (Fig. 1.9), use the S-100 bus and can accept all
of the bus-compatible cards made by other companies.

These computer systems are all based on electronic
circuits that have been in existence since 1970, and
some only in the last few years. The heart of these com-
puter systems is the central processor unit (CPU), which
contains the arithmetic and logic unit. Modern tech-

'low
__ 1:11illfW

..-_... __^ 1I111r!111i11^Iliuinlltullft(^ttt((lt^tli ►I^rt'

Fig.1.8 Some typical S-100 bus compatible circuit
cards. (Courtesy Pertec)

nology has been able to shrink the circuitry needed to
build a CPU so that all the components needed fit on a
single chip of silicon a mere quarter of an inch on a
side-the microprocessor (Fig. 1.10). Of course, for it
to work, power and special signals must be supplied
and circuits to make the output signals stronger (buf-
fers) must be used.

What Is a Microprocessor?

But a microprocessor is not a computer. It is just
the processing section. Along with the basic microproc-
essor, many memory circuits, input/output circuits,
and other specialized components are needed to make a
full computer. And, just as with the large computers,
all microprocessors are not the same. There are about
30 different types, made by about as many different
companies, and each has its own architecture, instruc-
tion set, power supply requirements, and other
peculiarities.

Both the Altair 8800b and the Imsai 8080 were
designed to operate with one specific microprocessor
as the central processor-the 8080A made by Intel
Corp., and now available from about half a dozen
vendors. However, since the creation of the 8080A in
1973, newer microprocessors, the Z-80 from Zilog and
the 8085 from Intel, offer compatibility and improved
performance.
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Fig. 1.9 The heart of any computer system, the computer itself, typically comes in a large case with many front panel switches and indi-
cators. The Imsai 8080 (left) and the Pertec Altair 8800b (right) were two of the first personal computer systems. (Courtesy Pertec and

Imsai)

The microprocessor is just what its name implies-
a miniature processor. Buried within the silicon chip are
all the basic elements of a computer-the control sec-
tion, the processing section, and some memory (usually
referred to as temporary registers). Specifically, the
8080A has an internal structure as shown in Fig. 1.11.
As you can see, there are quite a few subsections
squeezed into that quarter-inch chip of silicon. To use
the computer system, it's not necessary to know how
the microprocessor works or what each of its internal
subsections does. Also, for the most part, you must
have a fairly good technical background in computers
before you can even understand what the different sec-
tions do. For those of you with a reasonable background
in computers, the next few paragraphs will try to sum-
marize the characteristics of the 8080A. For those of
you with no background, some additional reading from
selections in Appendix A might be warranted if you
want to understand the inner workings of computers.

The 8080A microprocessor is a circuit designed to
process information in digital form. It operates on
digital information in groups of eight binary digits at a
time (each binary digit is referred to as a bit, and a group
of eight bits is referred to as a byte), and can perform
many different types of mathematical and logic opera-
tions on the digital information. There are four basic
internal sections of the 8080A the register array and
address logic, the arithmetic and logic unit, the instruc-
tion register and control section, and the bidirectional,
three-state data bus interface.

The register section consists of an array of memory
cells organized so that six 16-bit information blocks
can be stored. Two of the 16-bit registers are assigned
specific purposes-they serve as the program counter
(PC) and the stack pointer (SP). The purpose of the pro-
gram counter is to keep track of the location of the cur-
rent program instruction in the computer's memory.
The stack pointer maintains the location of a section of
memory called a stack, which is used to hold memory

addresses when a computer program calls a subroutine.
(More about programming in a later chapter.)

Three more of the 16-bit registers are actually
broken into six 8-bit registers that can be operated on
individually or in pairs. The 8-bit registers are referred
to as the B, C, D, E, H, and L registers and can be ac-
cessed in pairs as BC, DE, and HL. All of the registers
discussed so far can be manipulated by instructions.
One other register, called the temporary register, also
stores up to 16 bits, but it cannot be controlled by in-
structions. This register, referred to as the W, Z register,
is used only for the internal execution of instructions.

Bytes can be transferred between any of the regis-
ters inside the processor by the appropriate instruc-
tion. Double-byte transfers can also be performed be-
tween the register pairs and the SP and PC registers
and the address logic. The address logic in turn feeds a
16-bit binary number to the memory array external to
the processor, thus permitting the microprocessor to
access any one of 65,536 memory locations.

The arithmetic and logic unit (ALU) within the
8080A performs the actual manipulating of the com-
puter data. It performs the arithmetic, logic, and rotate
operations dictated by the instructions. In addition to
the circuits necessary to perform the operations, there
are several registers used to hold intermediate infor-
mation-an 8-bit register called the accumulator,
another 8-bit register called the temporary accumulator,
an 8-bit register called the temporary register, and a
5-bit register called the flag register that is used to hold
indicators from operations that took place in the arith-
metic and logic unit. The indicators are ZERO (shows
when an operation leaves a zero result in the accumu-
lator), CARRY (shows when an operation generates a
carry from the most-significant bit position), SIGN
(shows when an operation leaves a negative result in
the accumulator), PARITY (shows whether the sum of
all the bits left in the accumulator is odd or even), and
AUXILIARY CARRY (shows when there is a carry
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Fig. 1.10 Making the home computer system possible,
the microprocessor offers the computing power of
large computers in an extremely small package.
Housed in a 40-pin DIP, the 200 mil square chip of
silicon called the 8080 contains over 10,000 transistors.
(Courtesy Intel)

generated from the fourth to the fifth bits in the
accumulator).

The accumulator can be loaded from the ALU and
the internal bus, and can transfer data to the temporary

accumulator and the internal bus . A special instruction
permits the contents of the accumulator and the
AUXILIARY CARRY flag to be tested for decimal
correction when the processor is handling decimal
numbers in binary form. The DAA instruction permits
the results to be corrected back to the decimal format.

The instruction register and control section of the
microprocessor holds the current instruction and con-
trols all the internal operations of the processor for
the execution of that instruction . To properly synchro-
nize all the internal operations, special timing signals
called clocks are fed into the microprocessor.

Information flows in and out of the microprocessor
over an 8-bit path called the data bus. Digital informa-
tion can flow in either direction , depending on the oper-
ation the processor is performing. The bus is referred to
as a three-state bus because in addition to the normal
HIGH and LOW logic states possible, the bus can be
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Fig. 1.11 The architecture of the 8080A microprocessor is similar to that of most computer central processors. An arithmetic and logic
unit does all the processing and it is controlled by instructions and data fed into it.

made to go into a state where it effectively uses no
power and has no effect on the other circuits it is con-
nected to. This third state is often referred to as a high-
impedance state. When the bus is not in use it is usually
placed in this third state just to minimize power
consumption.

The Microprocessor Operates in Cycles

Each time the microprocessor executes an instruc-
tion, it completes an instruction cycle. The duration of
an instruction cycle includes the time required to pull an
instruction from memory and execute it. During the
pull, or fetch , part of the cycle, the selected instruction
(one, two, or three bytes long) is extracted from the
memory and deposited in the processor 's instruction
register . Then, during the execution phase of the cycle,
the instruction is decoded and translated into specific
actions by the control logic.

Every instruction cycle consists of one, two, three,
four , or five machine cycles. The fetch portion of an
instruction cycle requires one machine cycle every time
a byte must be fetched from memory . The length of the
execution portion of the cycle depends on the instruc-
tion being executed-some instructions may not require
any machine cycles beyond those of the fetch operation,
others may require additional cycles.

Each machine cycle further consists of three, four,
or five states, where a state is the smallest unit of
processing activity and is defined as the interval between
two successive positive-going transitions of the phase-
one clock signal. (The 8080A has all of its timing signals
supplied by a two-phase clock generator that delivers
two signals to the phase-one and phase-two clock input
terminals, as shown in Fig. 1.12.)

Every instruction cycle has at least one memory-
reference operation during which the instruction is
fetched. An instruction cycle must always have a fetch,
even if the execution of the instruction requires no
further references to memory. The first machine cycle
in every instruction cycle is thus a fetch operation.
Beyond that, there are no restrictions; subsequent

4
9V

01

9V

,12 '

icy
-250 ns TO 480 ns,-•1

TYPICAL

Fig. 1.12 Performing its instructions with timing de-
rived from a two-phase clock signal, the 8080A oper-
ates at frequencies of up to 4 MHz.
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machine cycles can perform any type of operation.
While no one instruction cycle will contain more than
five machine cycles, there are 10 types of machine
cycles that can possibly occur during an instruction
cycle:

1. Instruction fetch
2. Memory read
3. Memory write
4. Stack read
5. Stack write
6. Input
7. Output
8. Interrupt

9. Halt
10. Halt • Interrupt

The processor identifies the machine cycle in prog-
ress by transmitting an 8-bit status word during the first
state of every machine cycle. Updated status informa-
tion is presented on the 8080A's data lines during the
SYNC interval in the timing sequence. These data are
usually saved in a register and can be used to provide
control signals for external circuitry.

Before delving into computer operations any
further, let's backtrack and go through a quick review of
computer mathematics and logic, as well as a simple sum-
mary of the basic electronics needed to understand the
various components used in the computers.



CHAPTER 2

Binary Mathematics and
Boolean A lgebra

No matter which computer is used, or what instruc-
tions are given, the same number system performs all
the mathematical operations and the same logic gates
perform the Boolean operations. Computers use the bi-
nary numbering system to perform their operations since
for electronic circuits the two states of the binary sys-
tem-1 (HIGH) and 0 (LOW)-provide the simple equiv-
alents to the ON and OFF states used in electronic switch-
ing systems. But no matter which numbering system is
used, the operations performed-addition, subtraction,
multiplication, and division-are all done in the same
way; only the numbers change.

Computer Math : A Quick Review

Mathematics with the decimal numbering system has
become so commonplace that no one really has to sit
down and think about how a problem has to be done. If
we wanted to solve some simple problems such as these:

48 - 12 = ?
13 + 26 = ?
4 X 4 = ?

18 _ 3 = ?

we wouldn't even slow down to give the answers; we
would just rattle off 36, 39, 16, and 6.

But if we switch numbering systems to one we aren't
familiar with, such as the binary numbering system used
by all computers, some of us would be hard pressed to
solve the same problems:

110000 - 1100 = ?
1101 + 11010 = ?
100 X 100 = ?

10010 - 11 = ?

The answers are 100100, 100111, 10000, and 110. All the
same mathematical rules apply to any numbering system,
but the notation can confuse you. Let's try to clarify all
numbering systems by first looking at the one we're most
familiar with-the decimal system.

When we write down a number and then say it aloud,
we begin to get the organizational picture of our num-

bering system . For instance , the number 3165 is pro-

nounced three-thousand , one-hundred sixty-five. Now,

if we break it down into the positional notation repre-
sented by each number spoken aloud, we get

3 X 1000 = 3000
1 X 100 = 100
6 X 10 = 60
5 X 1 = 5

3165

As written, the center column of the breakdown is
nothing more than a listing of the powers of 10, similar to
the breakdown shown in Table 2.1. Each column of a
decimal number represents a power of 10, and the high-
est number that can appear in each column is a nine. The
name of this numbering system stems from the Latin
decema meaning 10, since there are a total of 10 symbols
used to represent all numbers.

Table 2.1 Positive Powers of 10

10°= 1=1
101 = 10 = 10
102= 100=10X 10
103= 1000=lox10X10
104= 10,000=10X 10X 10X 10
105= 100,000=10X 10X 10X 10X 10
106=1,000 ,000=10X 10X 10X 10X 10X 10

Since each column is represented by a power of 10, we
can say that the columns are ordered in ascending or de-
scending sequence, depending on which direction we read
from. Normally, a number is read with the largest power
of 10 first, so that the number follows a descending se-
quence. Another name for the highest order column is
the "most-significant digit," and for the lowest order
column the "least-significant digit." The total number of
columns defines the number of digits.

We often use a decimal point in writing numbers that
are a fraction of a whole number. To simplify the use of
the decimal point, we use negative powers of 10 to rep-
resent numbers to its right, as shown in Table 2.2. Thus,

11
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Table 2.2 Negative Powers of 10

10-1 = 0.1 = 1/10
10-2 = 0.01 = 1/100
10-3 = 0.001 = 1/1000
10-4 = 0.0001 = 1 /10,000
10-5 = 0.00001 = 1 /100,000
10-6 = 0.000001 = 1/1,000,000

a number such as 15.328 would be represented by

1 X 10 = 10 = 10
5 X 10° = 5 X I = 5

Table 2.3 Comparison of Binary , Octal , Decimal, and
Hexadecimal Codes

Binary Octal Decimal Hexadecimal

0000 00 00 0
0001 01 01 1
0010 02 02 2
0011 03 03 3
0100 04 04 4
0101 05 05 5
0110 06 06 6
0111 07 07 7
1000 10 08 8
1001 11 09 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

3 X 10'=3/10 = 0.3
2 X 10-2 = 2/(10 X 10) = 0.02
8 X 103=8/(10X 10X 10) = 0.008

15.328

The 10 different symbols used for the decimal system
form the base, or radix , of the system (base 10). Any num-
ber, however, can be used as the base. Three of the other
most common numbering systems in use are the octal, the
hexadecimal , and, of course , the binary , where the respec-
tive bases are 8, 16, and 2.

Nondecimal Numbering Systems

In a numbering system based on eight symbols (the
octal), we can count from 0 to 7 before running out of
numbers. If we count higher, we must follow the same
procedure used for decimal counting. After we fill up the
first column, a placeholder (zero) must be inserted and a
carry placed in the next higher column. The following
octal count sequence, with the decimal equivalent shown
just below it, illustrates this very clearly:

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Of course, numbers written in octal do not have the
same value as similar numbers written in decimal nota-
tion. In octal, any number filling a column represents a
power of eight instead of 10. For instance, the number
17628 can be broken into its parts to convert it back into
decimal notation.

1X83=I X8X8X8=
7X82=7X8X8 =
6X8'=6X8 =
2X 8°=2X 1 =

A base that is larger than 10 can be u
new symbols will have to be added. Our

Base 16 numbers also follow the same mathematical
guidelines, as you can see from the following hexa-
decimal-to-decimal conversion of the number BI3E:

B = 11 X 163 = 11 X 16 X 16 X 16 = 45,056
1= 1 X 162 = 1 X 16 X 16 = 256
3= 3X 16'= 3X 16 = 48
E= 14X 16°= 14X 1 = 14

45,374

The binary number system is perhaps the simplest of
systems to use and to understand. There are only two
symbols in the binary system-0 and 1-but all the same
rules again apply. A typical binary counting sequence,
with the decimal equivalents shown on the line below,
would be

0, I, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Each binary digit, or bit, represents a power of two,
so that any number can be represented by adding bits
together. As a typical example, let's break down the num-
ber 1100111 and convert it back into decimal notation:

512 1= 1 X 26 = 1 X 2 X 2 X 2 X 2 X 2 X 2 = 64

448 1= 1 X 25 = 1 X 2 X 2 X 2 X 2 X 2 32

48 0 0 X 24 = 0 X 2 X 2 X 2 X 2 0
2 0 0 X 23

2
= 0 X 2 X 2 X 2 0

1010 1 1 X 2 = 1 X 2 X 2 4
1=1X2'=1X2 2

sed , but several 1=1X2°=1X1 1
alphabet fortu- 103

nately provides a ready source of symbols. The letters
A, B, C, D, E, and F, for instance, have been used to
represent the numbers 10, 11, 12, 13, 14, and 15, respec-
tively, in the hexadecimal numbering system. A compari-
son between the four most popular codes is given in Table
2.3.

Converting a binary number into decimal notation is
easy enough, and going the other way is also simple. The
quickest conversion method is a simple process of divid-
ing and checking the remainder. Let's look at an actual
example, the conversion of 241 into binary:
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Number Divisor Result Remainder

241 - 2 120 + 1

120 - 2 60 + 0

60 - 2 30 + 0

30 - 2 15 + 0

15 - 2 7 + 1
7 - 2 = 3 + 1
3 - 2 1 + 1
1 - 2 0 + 1

The binary number is thus 11110001, with the left-
most digit representing the most-significant bit (MSB)
and the right-most digit representing the least-significant
bit (LSB).

Doing Math with Binary Numbers

In the binary system, the highest number that appears
in each column is, of course, 1. Therefore, every time two
is get added together, they generate a 0 and a carry. Let's
look at a few simple examples:

0 1 0 1
+0 +0 +l +1

0 1 1 10
I Carry bit

The sum of 1 + 1 is 2, but 2 can also be represented as 2'
and thus counts as a 1 in the next column . Let's now look
at a more complicated example:

1011 (decimal 11)
+ 111 (decimal 7)

To do the addition, first combine the right-most bits
to form a sum of 0 and generate a carry of 1 that gets
placed in the next column. The second column then has
a total of 3, which, of course, cannot exist in binary. A
total of 2 must thus be carried into the third column
and that leaves a remainder of 1, which stays in the second
column. The 2 that was carried into the third column ap-
pears as a I and is summed, just as in the first column.
The sum is 0, and another carry is generated. The last
column follows the same procedure. Since the sum is
again 0, another carry is generated and gets added to a
placeholder 0. Diagramatically, the same problem can
be shown as follows:

(1)^1011
0 0 1 1 1

1 0 0 1 0

Generated
carries

Subtraction procedures are just the reverse; instead
of a carry to the left, you must generate a borrow to the
right. Here are a few simple examples that illustrate basic
subtraction:

Comments

if remainder = 1, 20 is present
if remainder = 0, 2' is not present
if remainder = 0, 22 is not present
if remainder = 0, 23 is not present
if remainder = 1, 24 is present
if remainder = 1, 2' is present
if remainder = 1, 26 is present
if remainder = 1, 2' is present

(1) i- Borrow

0 1 1 0
-0 -0 -1 -1

0 1 0 1

13

Let's take a closer look at the borrow with a more
complex subtraction example:

1001
- 110

For the right-most digits there is no borrow prob-
lem, and the difference is 1. The next digits, however, re-
quire a borrow from the left-most column, and the bor-
rowing goes from left to right until the borrow reaches
the second column. Since each column represents twice
what is stored in the previous column, the borrowing of
a 1 provides 2 for the column that needs the borrow.
Thus, when the I is subtracted there is a remainder of
1. In the third column, I has already been borrowed
from the 2 that was shifted right, so when 1 is subtracted
the difference becomes 0. Diagrammatically, the sub-
traction looks like this:

(1) 2nd borrow
10 10 = B( ) ( ) orrows

1 0 0 1
1 1 0

0 0 1 1

Let's compare this operation to a similar decimal
subtraction:

2 (15) 8 (12) 4- Borrow plus whatever

5 0 2 was in the column

1 9 3 8

1 6 5 4

The binary numbering system is the easiest one for
digital electronic circuits to use since only two electrical
levels are needed: one to represent the binary I and an-
other to represent the binary 0. Different computer sys-
tems use different electrical levels to represent 1 and 0,
but whatever voltage levels are used, electronic circuits
operate similarly.

The computing power of all computers is based on
their ability to perform logic operations controlled by
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data and instructions. Boolean algebra can thus be used
to express many of the processes of computer systems
since it is a form of logic reasoning involving two states:
truth and untruth.

The ability of a computer to perform logic and math
operations rapidly is its only strength. In logic, all state-
ments must be either true or false; there are no inter-
mediate conditions such as "maybe."

The binary numbering system provides us with just
the right symbols to work with, and we will adopt them
as a standard for the rest of the book. For a true logic
statement, the binary value of I will be assigned, and for
an untrue statement, a value of 0. Thus, a statement can
equal I or 0 but it cannot have any other value (that is, it
must be either true or false). Electronic circuits adapt
easily to this system because only two voltages are needed
and they can be as simple as ground (nothing, or 0 V) and
some level V (which can be positive or negative). The true
or false representation can be turned into an on and off
equivalent for electronic circuits. Thus, when the circuit
is turned on the statement could be true, and when the
circuit is turned off the statement could be false. Depend-
ing on the type of logic circuits used, the positive level or
ground could just as easily represent the true statement
or the false statement.

Either statement standing by itself is of little logical
interest. A statement has a truth value of 1 or 0, and that's
all. However, when several statements are grouped to-
gether, other logical inferences can be developed. The
three basic logic operators-AND, OR, and NOT-
help connect statements so that conclusions can be
drawn.

Using Logic Operators

The AND operator can be used to connect any num-
ber of logic statements, all of which must be true for the
conclusion to be true. For instance, suppose a friend
tells you that on Saturday you will find him at the park
if the weather is good AND he has the day off from work.
This remark can be written as a logic equation by using
symbols: Let A represent the statement that the weather
is good, B the statement that he has the day off from
work, and C that you will find him at the park. There-
fore, if A AND B then C.

Writing out an entire logic operation is often not
necessary; a shorthand notation can be used. Sometimes
the multiply dot • in the middle of a line is used to repre-
sent the AND function, and other times the dot is omitted
and the individual letters are placed next to each other:

Statement A Statement B Outcome (A • B)

0 0 0
0 1 0
1 0 0
1 1 1

This type of listing is called a truth table since it
shows every possible combination of the two statements.

The OR operator can also be used to connect any
number of logic statements. However, unlike operations
with the AND operator, only one statement of all those
connected need be true for the outcome to be true. Let's
use the same example we used for the AND operator but
modify it slightly: A friend tells you that on Saturday you
will find him at the park if the weather is good OR he has
the day off from work.

We can write this statement in the form of a logic
equation if we use the plus symbol + to represent the
logic OR operation. Thus, if A + B then C. Whenever A
or B is true, or they are both true, the outcome is true.
Again, this can be shown in truth-table form very simply:

Statement A Statement B Outcome (A + B)

0 0 0
0 1

0
1 1

The only time your friend won't be at the park will
be if the weather is not good AND he doesn't have the
day off from work.

The last basic logic operator, the NOT function, can
be used to invert or complement a logic statement. It is
usually symbolized in shorthand by an overscore of the
logic statement or statements you want to invert. Let's
see how the logic statements used for the AND and OR
operators can be rewritten.

The statement A refers to the fact that "the weather
is nice"; therefore, A represents the statement that "the
weather is not nice." Similarly, B represents the state-
ment that "he has the day off from work," and B means
that "he does not have the day off from work." Since A
is represented by the binary 1, A. would then be binary 0
(A = 1, A = 0). Common pronunciations of A are "not A"
and "A bar," although you may run across others. The
truth table for the NOT function is very simple since it
operates on one item at a time:

A A

0 1
1 0

if A • B then C; if AB then C

Each of the two statements A and B can be either
true or false. If true, we assign the statement a value of
1, if false, a value of 0. The statements can be tabulated
to show all four possible combinations and the possible
outcomes:

Each of the logic operators has a physical equivalent
that you might find easy to relate to. The simplest ex-
ample is probably the common water faucet. If you take
a look at your kitchen sink, you'll probably see some-
thing like the arrangement shown in Fig. 2.1. On top of
the sink are two faucets (call them A and C) and a com-
mon spout. Under the sink you'll find two valves (call
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Fig. 2.1 A kitchen sink with two faucets, a common
spout, and two emergency valves underneath is a good
analogy for combined AND/OR logic statements.

Fig. 2.2 Just as valves are used to start and stop water
flow, switches (toggle, push button, rotary, etc.) are
used to start and stop electrical current flow. (Courtesy
Centralab and Micro Switch)

them B and D), one on the hot water line and one on the
cold.

For water to flow out of the tap (call this statement
E), the valve under the sink AND its respective faucet
must be opened: A • B + C • D = E. This logic statement
combines both the AND and OR operators since the tap
is common to both hot and cold water lines. Water will
flow if both valves A AND B are opened OR valves
C AND D are open.

Just as we use valves to start and stop water flow, we
can use electrical switches to start and stop electrical cur-
rent flow (Fig. 2.2). Several switches connected in series
perform an AND function (Fig. 2.3a). Switches in par-

allel perform an OR function (Fig. 2.3b), and a simple
switch set up to function in a normal way can simulate
the NOT function (Fig. 2.3c).

Combining Logic Operators

By mixing the three basic operators AND, OR, and
NOT together, several other logic functions can be cre-
ated. An AND combined with a NOT makes a NOT-
AND, or NAND function; an OR combined with a NOT
makes a NOT-OR, or NOR function; and two NOT func-
tions cancel each other out. The truth tables for these
functions and several others are shown in Fig. 2.4. Only
two truth statements are used as determining elements
in the examples although any number of statements can
be used.

Multiple statements can be combined into one logic
equation and there is no limit to the number of state-
ments that can be linked. You can have two, three, four,
eight, or more logic statements or expressions combined
on one operator. The electronic equivalent to the logic
operator is called a gate. It is possible to buy AND, OR,
NAND, NOR, NOT, Exclusive-OR (XOR), AND/OR,
and many other types of gates, each with different num-
bers of possible inputs. Many of the common symbols
for logic gates are shown in Fig. 2.5.

The mathematics of combining these different logic
gates is what we call Boolean algebra. Every form of
mathematics has some basic theorems, postulates, and
underlying truths. In the short space of this book, you'll
just get an overview and rudimentary understanding of
the basic concepts. (For more about Boolean algebra,
see Appendix A for additional reading.)

AND

X Y

(A)

0

OR

XA^

oy

(B)

NOT (INVERSE OF NORMAL)

X X
(C)

Fig. 2.3 Switch connections showing (a) AND, (b) OR,
and (c) NOT (inverse of normally open) equivalents of
logic gates.

0

A B A•B A B A+B A A A B A Q B

0 0 I 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1

I 0 1 1 0 0 1 0

1 1 0 I 1 0 1 1 0

(A) (B) (C) (D)

Fig. 2.4 Truth tables for (a ) NAND, (b) NOR , (c) NOT-
NOT, and (d) Exclusive-OR (XOR ) gates.
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A+B

OR

NOT

Fig. 2.5 Commonly used symbols for logic gates.

The Basic Rules of Boolean Algebra

Thus far we've looked at truth statements, and if one
was true we assigned it a value of 1, and if false a value of
0. Let's see what happens if we try combining statements.

When two true statements are ANDed together, the
outcome is always true. If one of the statements is false,
the outcome is always false. In symbolic form, some uni-
versal statements may be made, as follows:

1. The outcome of a logic AND equation where all
but one term is known to be true depends directly on the
unknown term:

A • 1 = A

2. The outcome of a logic AND equation where any
of the terms is false is always false:

A • 0 = 0

3. Any logic statement ANDed with itself is equal
to the original logic statement:

A • A = A

4. Any logic statement ANDed with its complement
is always false (see statement 2):

A • A = 0

5. Any logic statement upon which a double NOT
operation has been performed is equal to the original
statement without any operations performed:

A = A

6. The outcome of a logic OR operation where any
number of statements are ORed with at least one true
statement will always be true:

A + 1 = 1

7. The outcome of a logic OR equation where one
or more terms are known to be false depends on the re-
maining statements:

A + 0 = A

8. Any logic statement ORed with itself is equal to
the original logic statement:

A + A = A

9. Any logic statement ORed with its complement
is always true:

COLUMN I 2 3 4 5

A B C A + B+C A•B•C A•B•C A+B+C

0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

Fig. 2.6 Truth table for DeMorgan's theorem using
binary numbers.

A + A = 1

Boolean algebra also follows some common mathe-
matical laws, which can be illustrated as follows:

Commutative Laws

A • B = B • A
A + B = B + A

Associative Laws

(A•B)•C=A•(B C)
(A+B)+C=A+(B+C)

Distributive Laws

A + B • C=(A+B) • (A + C)
A- (B+C)=A• B+A• C

Two theorems were developed after Boole formulated
his basic postulates . These theorems, developed by
DeMorgan , bear his name. The DeMorgan theorems
simply state that:

1. The inverse of any series of OR operations is
equivalent to an identical series of inverted AND
statements:

A+ B+ C= A- B- C

2. The inverse of any series of AND operations is
equivalent to an identical series of inverted OR
operations:

A • B • C = A + B+ C

Let's go through the truth table for these two
theorems (Fig. 2.6). When all three statements are false,
the NOT-OR combination (column 2), the NOT-AND
combination (column 4), and their DeMorgan equiva-
lents (columns 3 and 5) are all true. However, for the
NOR function (column 2) and its equivalent in column
3, whenever any one or more of the logic statements in
column 1 are true, the outcome is false. On the other
hand, the NAND function shown in column 4 (and its
equivalent in column 5) remains true for all combina-
tions of the logic statements except for the case of all
three statements being true. When A, B, AND C are
true, the AND function requires that the output be
true; however, since a NOT operator covers the entire
expression, the outcome will be opposite to that nor-
mally expected.



CHAPTER 3

Introductory Electronics and
Logic Functions

Computers are built from a wide variety of elec-
tronic components and hardware-resistors, capaci-
itors, integrated circuits, transistors, diodes, trans-
formers, cabinets, switches, sockets, indicators, printed
circuit boards, and a multitude of other items. However,
unless you are going to troubleshoot the computer when
it breaks down, or you intend to build your own com-
puter boards, you really don't have to know how the
various components work. This chapter will provide a
brief summary of the operation of most of the major
components encountered in a computer. For detailed
explanations and theoretical discussions consult Ap-
pendix A for additional reading.

Very simply, electricity is the flow of electrons from
one point to another. Materials that permit an easy flow
of electrons are called conductors and they offer a
low resistance to the flow. Materials that totally block
or tremendously impede the electron flow are called
insulators; they offer a high resistance to the flow.
There are also materials that fall somewhere in between
the conductors and insulators; these we call semicon-
ductors, and they form the basis for all solid-state
circuits.

The force that moves electrons is called the electri-
cal potential (often referred to as voltage); it is measured
in units called volts. The flow of electrons caused by
the voltage is called current and is measured in units
called amperes. Opposition to the flow of current is
called resistance; it is measured in units called ohms.
The triad of volts, amperes, and ohms forms a simple
mathematical relationship known as Ohm's law:

voltage = current X resistance

Standard abbreviations for voltage, current, and
resistance are as folllows:

V = volt (unit of voltage)
A = ampere (unit of current)
fl = ohm (unit of resistance ; symbolized by the

capital Greek letter omega)

The basic numerical relationship between these three
terms can be expressed with the help of symbols:

IV= I A X 1 H

However , whenever numbers are not used , the letter E
represents the voltage potential.

Electricity takes two forms : alternating current (ac)
and direct current (dc). In your home , office, and most
places of business , the power available at the wall outlet
is a form of sinusoidally alternating current . The poten-
tial that forces the current to flow follows a pattern such
as the one shown in Fig. 3.1 . The voltage starts at a zero
level, increases to a positive maximum value, then de-
creases through zero to a maximum negative value, and
finally rises back to zero . This cyclic operation repeats
many times a second and each complete variation is
called a cycle. The ac power supplied in the United
States provides 60 cycles every second at an average
of 115 V. To measure the number of cycles per second,
we use the unit Hertz (abbreviated Hz); thus the ac
power is said to be 115 V, 60 Hz.

Dc voltages don't vary in cyclic patterns ; they are
constant . A simple example of a dc source is the com-

V

Fig. 3.1 Representation of an ac power source.

TIME

CELL

-]1I1I^ BATTERY

ARBITRARY
SOURCE

Fig. 3.2 A dc power source shown in graphic and
schematic representations can be as simple as an
ordinary flashlight battery or as complex as an entire
rack of equipment.
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mon flashlight battery. Its voltage remains almost con-
stant, but slightly decreasing, as shown in Fig. 3.2 on the
previous page, until the chemical processes inside the cell
can't produce any more electricity. When that happens,
the cell has served its useful life and is either discarded or
recharged.

FIXED
RESISTOR POTENTIOMETER

Fig. 3.3 Some typical resistors and their various sche-
matic symbols. (Courtesy Allen-Bradley and Bournes)

Let's Look at the Components

Components specially designed to provide resis-
tance, called resistors, form an important part of every
electronic circuit. They are available in many different
forms, in both fixed and adjustable types, as shown in
Fig. 3.3. The type of resistor to be used depends on
many design criteria, from resistance value to operating
temperature. For many applications, low-cost resistors
made from molded carbon are quite sufficient. How-
ever, when high power-handling capability or high
precision is needed, more expensive metal-film or wire-
bound resistors are usually selected. Many resistors are
often used in the same circuit, and sometimes several
resistors must be combined either in series or in parallel
to make a larger or smaller value. Combinations of
resistors are often used to split currents and divide
voltages.

Every electronic component has resistance, even
conductors. Wire, for example, has a very low resis-
tance-typically thousandths of an ohm for short
lengths. And, in most cases the resistance can be ig-
nored. But it can't be ignored in the power connections
within the computer. Here, voltage losses of half a volt
might occur, and that, combined with heat build-up
from the power loss (hR), can cause problems. Basi-
cally, wire resistance depends on four factors-length,
material, temperature, and diameter-but is most often
directly compared to diameter. The thicker the wire
the lower the resistance.

Another component often encountered is the ca-
pacitor, which is represented by the symbol shown in
Fig. 3.4a; some representative samples are shown in
Fig. 3.4b. The capacitor has a characteristic called ca-
pacitance, which is a sort of storage capability for elec-
trons, and is measured in units called farads, F. Most
capacitance values today are small compared to the
farad, and in many cases capacitance is specified in
millionths or millionth-millionths of a farad-µF
(microfarads) and pF (picofarads), respectively.

In its simplest form a capacitor consists of two
closely spaced parallel conducting plates separated
by some form of insulating material. The type of insu-
lator used to separate the plates has a lot to do with
the storage capacity. Commonly used insulators include
ceramics, mica, glass, oil, and even waxpaper. Most
small-valued capacitors (under 1 µF) "don't care" as to
the type of voltage (ac or dc) connected to them since
the materials used are not sensitive to positive or
negative voltages. However, larger-valued capacitors,
known as electrolytics, use a special combination of
materials and chemicals to obtain the high capacitance
(tenths of a farad). Because of their special construc-
tion, the capacitor terminals have a fixed voltage polar-
ity and can literally explode if polarities are not
observed.
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HE-

Fig. 3.4 Some typical capacitors and their schematic
symbols. (Courtesy Sprague)

Capacitors are not only rated for their capacitance,
but for their maximum operating voltage as well. Be-
cause of the nature of the materials used, the larger
the capacitance value, the larger the physical size and
the lower the voltage rating. A typical electrolytic
capacitor used in a computer. power supply might have
a rating of, say 5000 µF at 35 V and have a physical
size of 5 in. long by 2 in. diameter. In contrast, a tiny
disc capacitor, about 0.5 in. diameter and only 0.1 in.
thick, might have a rating of 0.01 yF at 1000 V.

Capacitors act as an open circuit for dc voltages;
since there is no connection between the plates, no cur-
rent flows. The amount of voltage the capacitor can
withstand and the capacitance value are determined by
the separation and size of the plates and the insulating
material used. In ac circuits, the voltage, which is con-
stantly cycling, seems to pass right through the
capacitor.

Resistors and capacitors are known as passive
components since they cannot perform any control
function and do not require a source of power aside
from the voltage connected to them. Another class of
components-active devices-require a power source
in addition to the signal coming in. Active devices in-
clude such components as electronic tubes, transistors,
diodes, silicon-controlled rectifiers, and integrated
circuits.

The Basics of Solid-State Technology

Except for tubes, all active components are built
from semiconducting material nowadays silicon, al-
though some early devices in the 1950s and 1960s were
built from germanium. Appendix A lists many books
that discuss the history of semiconductors and their
theory of operation. The rest of this chapter will pro-
vide a capsule view of some electronic components to
familiarize you with some symbols and terms.

The semiconducting material used is made from
specially processed silicon that has been refined to ex-
tremely pure levels and then made impure with special
materials. Silicon with an excess of electrons is called
n-type material, and silicon with a deficiency of elec-
trons is called p-type material.

A diode consists of two layers of silicon grown on
top of each other-one p type and one n type-as shown
in Fig. 3.5 (note its symbol). When an alternating volt-
age is placed across the diode, the electrons are pushed
from the n-type material only for the first half of the
cycle. On the other half of the cycle, no electrons flow,
since electrons are forced to go back into the material.
The diode is often called a rectifier, since for ac signals
half of the signal is removed, as shown in Fig. 3.6. This
process is called rectification.

The diode is biased so that current will flow if the
p section is more positive than the n section. Because of
the nature of silicon (not discussed in this book), about

METAL
LEAD

P-TYPE
MATERIAL

P-N JUNCTION

METAL
LEAD

N-TYPE
MATERIAL

/ 11
N TYPE

P TYPE
(ANODE

) (CATHODE)

Fig. 3.5 A semiconductor diode consists of two layers
of silicon grown on top of each other-one p type and
the other n type.
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Fig. 3.6 When an ac signal is imposed on a diode, the voltage causes current to flow in only one direction.

P ,N N. _P

-VD

I

0.7 V

Fig. 3.7 Diodes must be biased so that current will
flow if the p section is biased more positively than the
n section.

VD

There are also several families of diodes-signal
handling, power rectification, voltage reference, light
emitting, switching, and others-but if you look at the
packages shown in Fig. 3.8 you can see they are hard to
tell apart.

Voltage-reference diodes, called zeners, are used
to set voltage levels. When forward biased, these diodes
behave just like normal diodes and permit current flow.
However, when they are reverse biased at a point above
what is known as the breakdown region the p-n junc-
tion goes into an avalanche, or zener, mode, and the
potential across the p-n junction remains at an almost
constant voltage, known as the zener voltage, Vz.
(Fig. 3.9). (More zener diode information is available
in the reference books listed in Appendix A.)

Another major family of diodes used in building a
computer is the light-emitting diode, better known as
an LED. These devices, when forward biased, emit
colored light (either red, green, yellow, or orange).
Typically, bias voltages of 1.5 to 2 V are necessary to
make the diodes emit light, with currents ranging from
5 to 50 milliamperes. Some LEDs are available pre-
packaged with a series resistor so that they can operate
from a higher voltage without burning out, as shown in
Fig. 3.10. LEDs are used as indicators in many elec-
tronic applications; more about how to use them will be
discussed in succeeding chapters.

Transistors : Semiconductor Control Elements

If two diodes are placed back to back so that both
p regions are connected or so that both n regions are
connected as shown in Fig. 3.11, they roughly approxi-
mate the structure of a bipolar transistor. Actually, a
transistor is made up of three regions. If it's an npn

+V

Fig. 3.8 Diodes are hard to tell apart due to their
similar packaging. However, their functions vary-
signal handling, power rectification, voltage refer-
ence, light emitting, light sensing, switching, etc.
(Courtesy Motorola)

0.7 V is required to forward bias the diode (Fig. 3.7).
Germanium diodes, although not common now, are
still in use; they require a forward voltage bias of 0.4 V.

ZENER MODE

Fig. 3.9 Zener diodes are used to set voltage levels.
They behave like a normal diode when forward biased,
but when reverse biased at a point above the break-
down region, the p-n junction goes into avalanche
(the zener mode). The potential across the p-n
junction then remains almost constant. This voltage is
known as the zener voltage.
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0

Fig. 3.10 Various forms of light-emitting diodes and
their basic schematic symbols. (Courtesy Texas
Instruments)

I
N

1
P

I
N

N TYPE P TYPE N TYPE 1
SILICON

P N N P

I

P N P

P TYPE I N TYPE P TYPE

SILICON

Fig. 3.11 The basic transistor structure can be simu-
lated by placing two diodes anode-to-anode or
cathode-to-cathode (pnp and npn structures).

transistor, it has a p material sandwiched between two
n-type materials; if it's a pnp transistor, it has an n mate-
rial sandwiched between two p-type materials. The
symbols for npn and pnp transistors, along with some
typical devices, are shown in Fig. 3.12.

The central region (where both diode p or n regions
combine) is called the base of the transistor and serves
as the control terminal. The leg of the device with the
arrow superimposed is called the emitter, and the leg
without the arrow is called the collector.

Because the base acts as a control element, much
like a water faucet, the transistor can act as a switch.

NPN PNP

Fig. 3.12 Various transistor packages and the two
basic transistor symbols. (Courtesy Amperex)

Fig.3.13 A simple transistor switch, controlled by
two power supplies, can turn an LED on or off depend-
ing on the polarity of the supply connected to the base
terminal.

21

When the base-emitter junction is reverse biased, no
current can flow in the collector circuit; but when it is
substantially forward biased, current can easily flow in
the collector circuit. For more about basic bipolar tran-
sistor operation, see the books listed in Appendix A.

The circuit shown in Fig. 3.13 can be used to illus-
trate the switch concept simply. In the base-emitter
circuit is a switch that can select either a forward or
negative bias. When connected to the negative bias V2,
the LED will not light up, but if the switch connects to
the forward bias source, the LED lights, thus showing
current flow. This general principle is used in all digital
computer circuits to indicate the ones and zeros of bi-
nary arithmetic.

There are many types of three-terminal control
semiconductors other than bipolar devices. Some use
an electric field-effect to permit or stop current flow.
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Fig. 3.14 Field-effect transistors are available in two
forms: the junction FET (JFET) in both p- and n-
channel versions (a and b), and the insulated gate
FET (c and d), which is better known as the metal-
oxide FET (MOSFET).

These devices, called field-effect transistors or FETs,
are available in two forms: the junction field-effect
transistor (JFET) and the insulated-gate field-effect
transistor (IGFET), which is more commonly known
as a metal-oxide semiconductor transistor, or MOSFET.
FETs do not have a collector, emitter, or base. Instead,
their terminals are called the source, drain, and gate,
respectively. Both types of FETs are shown in Fig. 3.14,
along with their schematic representations.

DRAIN

SOURCE

DRAIN

N-CHANNEL

MOSFET

Other types of devices such as silicon-controlled
rectifiers (SCRs) and triacs are also used in computer
systems, mainly to perform necessary control functions
that require high current-handling capability. The SCR
and the triac are three-terminal devices like transistors,
but that's where the similarities end. The terminal used
as the control element is referred to as the gate, and
when a control voltage is applied to the gate, the SCR
or triac is turned on like a switch. If the control volt-
age is then removed, the SCR or triac will continue
conducting as long as the voltage difference between
the anode and cathode remains at a minimum positive
value. The symbols and basic structures of both devices
are shown in Fig. 3.15.

Basically, the SCR is a controlled diode. If a volt-
age is placed across the SCR's anode and cathode so
that the "diode" structure is forward biased, no conduc-
tion will take place until the gate is also brought positive
with respect to the cathode (triggered). When the SCR is
"triggered," it will conduct current in the forward direc-
tion until the current drops below the minimum needed
to support conduction. When the current drops below
the minimum value, the SCR or triac resets itself to the
blocking condition and will not conduct again until
another voltage is placed on the gate. Although opera-
tion of the triac is similar to that of the SCR, the triac
can conduct current in both directions and thus handle
ac current as well as dc. The gate can be triggered each
time the voltage difference between anode I and 2 or
between 2 and I goes above the minimum value neces-
sary to permit conduction. Current capabilities for
both SCRs and triacs range from tens of milliamps to
hundreds of amps.

ANODE

SCR

ANODE I

TRANSISTOR
EQUIVALENT
OF SCR

J
1-1

0
CATHODE CATHODE

ANODE I GATE

ANODE 2

TRIAC

ANODE

L

ANODE 2

Fig. 3.15 Silicon-controlled rectifiers and triacs are
also three-terminal devices like transistors and are
often housed in transistor- like packages . Their char-
acteristics , however, are quite different than those
of transistors.
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Fig.3.16 The inverter function is similar to a seesaw-whatever the input state is, the output state is the opposite.

The Integrated Circuit

Almost all the different components discussed so
far the resistor, capacitor, diode, and transistor-can
be combined in various forms within a single, minute
piece of silicon less than 0.2 in. per side. Circuits formed
in this way are called integrated circuits and form the
basis for all modern computer structures. There are
four major classes of logic circuits in use today:

I. complementary metal-oxide semiconductor (CMOS)
logic circuits

2. n- and p-channel MOS (NMOS, PMOS) logic
circuits

3. transistor-transistor logic (TTL) circuits
4. emitter-coupled logic (ECL) circuits

Each of these logic families can be broken down
into three levels of circuit complexity: small-scale inte-
gration (SSI), which usually consists of simple gate
functions; medium-scale integration (MSI), which con-
sists of storage elements and multiple-gate arrays; and
large-scale integration (LSI), which consists of large
arrays of storage elements, processing systems, and
complex control circuits.

The basic building block of digital computers is the
logic gate; it is the "glue" that holds all the more com-
plex circuits together. In the previous chapter some
basic guidelines were set up for logic notation, and
they bear some repeating:

1. A logic ONE level is the most positive voltage level
used in the system.

2. A logic ZERO level is the lowest or most negative
voltage level used in the system.

Many circuits in use today have been "standard-
ized" to work within predetermined voltage changes.
Almost all forms of TTL, CMOS, and NMOS can oper-
ate from a power supply of 5 V dc and have logic ONEs
and ZEROs that obey the following rules:

Logic 1 = any voltage above 2 V
Logic 0 = any voltage below 0.8 V

7402

Let's take a look at the simple NOT, or inver-
ter, circuit and see how the input logic level controls
the output logic level. Basically, the inverter can be
thought of as the pivot of a seesaw (Fig. 3.16). What-
ever the condition of the input, the output is the oppo-
site. Thus, when the input is a logic ZERO, the output
is a logic ONE, and vice versa.

More Complex Circuits

The simple inverter is just the beginning. There
are many types of standard logic circuits, as mentioned
in Chapter 2 in the discussion of basic Boolean func-
tions. Some of the more common circuits include the
7400 quad 2-input NAND gate, the 7404 hex inverter,
the 7410 triple 3-input NAND gate, the 7402 quad 2-

7400

PWR '1312 II 10 9 8

1

14

rr 7
1 2 3 4 5 6 GND

7404
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PWR 13 12 II 10 9 8
14

7
2 3 4 5 6 GND

7408

PWRI 13 12 II 10 9 8 PWRI 1312 II 10 9

7
2 3 4 5 6 GND 2 3 4 5 6 GND

7410

PWR I 13 12 11 10 9
14

1 2 3 4 5 6 GND

VCC BI
114

7450

X X DI CI YI

13 112 111 110 i9 18

2 3 4 5 6 17
Al A2 82 B3 D2 Y2 GND

Fig. 3.17 Package layouts of some commonly used
logic gate functions.
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Fig. 3.18 A typical decoding circuit (a) accepts a 4-bit BCD input code and provides seven outputs that can supply power to a seven-
segment display, thus forming the numbers 0 to 9 (b).

input NOR gate, the 7408 quad 2-input AND gate, and
the 7450 expandable dual 2-input AND-OR-INVERT
gate (see Fig. 3.17 on p. 23). These TTL circuits are often
referred to as SSI (small-scale integration), and they
form the logic "glue" that binds all the more complex
circuits together.

A form of TTL circuit that uses a newer technology,
the low-power Schottky TTL circuit, has just about
replaced almost all of the older TTL circuits for new
computer designs. These circuits, referred to as the
74LS00 family are, for the most part, directly substitut-
able in circuits for the older 7400 family. Basic opera-
tion of the functions is identical; however, the 74LS00
family components require less power and operate
faster.

More complex arrays of gates can be built to de-
code binary bit patterns or to encode one bit pattern
into another. A typical combination decoding and drive
circuit is the 7447 (Fig. 3.18). It accepts a four-bit BCD
input code and provides seven outputs that can power

the correct lamps in a seven-segment display to form the
numbers 0 through 9. The four-bit input at A, B, C, and
D determines which of the seven outputs stays HIGH
or goes LOW. Each output of the seven inverters has
an open collector transistor that can handle up to 20 mA
and whose structure is similar to that shown in Fig. 3.19.

SUPPLY

GND

b

c

CURRENT
LIMITING
RESISTOR

LOAD

Fig. 3.19 The open-collector output structure of many
logic circuits permits the output voltage and current
to be defined by the application.
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a

d

Fig. 3.20 To form the number 0 on an LED display, all
segments but the g segment must be turned on and
lit up. Other numbers can be formed by lighting the
appropriate segments.

stay HIGH , thus displaying 8; and for 1001 , e and d stay
HIGH , thus displaying 9.

All gate circuits discussed so far, however have out-
puts that depend directly on the present state of the
input signals. If the input signals are changed , the output
will follow the input in accordance with the gate logic.
All combinatorial logic circuits have this shortcoming-
a lack of memory. If you need a circuit whose output
depends on previous states, the circuit must be able
to remember , or store, the result of the previous input.
Another logic element called the bistable multivibrator
(better known as the flip flop) is needed to hold infor-
mation about the previous input . Usually, a flip-flop has
two outputs , each the complement of the other. When
one output is LOW , the other is HIGH , and vice versa.
The condition of the flip-flop outputs is often referred
to as the state of the output; in many cases , the outputs
are labeled Q and Q.

The most basic form of flip-flop, the R-S, can be
formed by cross-coupling two NOR or NAND gates
(Fig. 3.21 ). Input leads R and S refer to the control
signals RESET and SET, which determine the state of
the Q and Q outputs. If the R and S signals are assumed
to be voltage levels corresponding to the logic 1 and 0
values, the R and S inputs work as follows: Regardless
of the output state, whenever a logic 1 appears at the
reset input , the flip-flop 's output will always go to
Q = 0 and Q = 1. And, when a logic I appears on the set
line, the output will always go to Q = I and Q = 0.

For this simple flip-flop, there is one condition
for which the output cannot be defined when R = 1
and S = I. Since this is an illogical request anyway-
trying to set and reset the flip -flop at the same time-
the output-can be said to be indeterminate . The opera-
tion of a flip -flop can be summarized in what is called
a transition table-a form of truth table for flip-flops
(Fig. 3.22). In the first column is the present state of
the Q output , and in the next two columns are the input
conditions of the R and S lines. The last column indi-
cates the new Q output after the input signal has been
fed in . The first column can also be said to indicate the
flip-flop 's output at time t and the last column at time
t + r, where r is an incremental period of time needed
for the flip-flop to change its state . The table can be
reorganized to simply indicate what input conditions
are needed to make the output change in the fashion
desired ( Fig. 3.23 ). This type of table can be called an

Whenever the output transistor is turned on, any load
connected from the supply to the output will have cur-
rent flowing (logic ZERO). When the transistor is
turned off (logic ONE), the current stops flowing.

For the input code 0000, all outputs but g go LOW
and cause bars a, b, c, d, e, and f to light up on the dis-
play, generating the number 0 (Fig. 3.20). For a 0001
input , all outputs except the b and c lines stay HIGH,
thus displaying the number 1. For the code 0010, the
f and c outputs stay HIGH , thus displaying the num-
ber 2; for 0011 , f and e stay HIGH , thus displaying 3;
for 0100 , a, e, and d stay HIGH , thus displaying 4; for
0101, b and e stay HIGH , thus displaying 5; for 0110,
a and b stay HIGH , thus displaying 6; for 0111, f, g, e,
and d stay HIGH , thus displaying 7; for 1000, no lines

INPUT

R 0

OUTPUT

INPUT S
0

0
0

S 3

(A)

Fig. 3.21 The R-S flip-flop (a) is the simplest form of
storage element that can be made by cross coupling
two gates. The flip-flop's Q output will go HIGH when
S goes HIGH and LOW when R goes HIGH (b).

0(t) R S 0 (t+r)
0 0 0 0
0 0 I I
0 1 0 0

0 I I INDETERMINATE
I 0 0 I

I 0 I I

I I 0 0

I I INDETERMINATE

Fig. 3.22 Transition table for a R-S flip-flop.
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STATE CHANGE REQUIRED INPUT

FROM TO R S

0 0 d* 0

0 I 0 I

I 0 I 0

I 1 0
dd

*DON'T CARE STATE.

Fig. 3.23 The excitation table for the R-S flip-flop.

SYSTEM CLOCK

STABLE I PHASE
FREQUENCY GENERATING
SOURCE Po) CIRCUITRY
(CRYSTAL THAT PROVIDES
CONTROLLED OVERLAPPING OR
OSCILLATOR) NONOVERLAPPING

OUTPUTS,
TYPICALLY
I TO 4 PHASES

4 01

-) 02

4 03

4 $4 (A)

to

#1

02

-1 W (-

POSSIBLE TWO-PHASE OUTPUT
(B)

Fig. 3.24 In a computer system, the source of all the
timing signals is often referred to as the system clock
(a). The clock often generates either a square or
pulsed type of signal in from one to four phases (b).

excitation table. In the table, d indicates don't-care
states, where it doesn't matter whether the signal is a
ONE or ZERO.

Let's step back for a minute and look at how the
NOR gate flip-flop works. To start with, assume an
output condition, say Q = 1, Q = 0. If a signal of R = 0,
S = 0 is input, gate A has an input of 00 and its output
stays at 1, and gate B has an input of 01 and its output
stays at 0. However, if the input changes to R = 1, S = 0,
the input to gate A becomes 10 and its output changes to
0. Now, the input to gate B changes to 00 and its output
changes to 1. The time it takes for gate A to change can
be called 01 and for gate B 02. The total flip-flop transi-
tion time previously called T can be represented by
01 + 02. Since these times are often identical: T = 2 A 1.

An equivalent to the NOR circuit built with NAND
gates and two inverters works similarly. With both of
these circuits, any time a signal comes along on the
input lines, the flip-flop will trigger. By adding a gate
at each input that can be synchronized to some form of
timing generator in the overall system, however, you can
effectively lock out signals that occur outside of the
window you allow. The timing generator most often
used is called the system clock. It is just a circuit that
generates a square wave or pulse train at a precise fre-

Fig. 3.25 The R-S flip-flop can readily be modified
to respond to inputs only when a clock is present.

R
I

S

Cp

t
0

Fig.3.26 The timing diagram of the clocked R-S
flip-flop shows that the output of the flip-flop will only
change when an input and a clock pulse are present
at the inputs.

D

S Cp 0

Fig. 3.27 By adding an inverter on the R input of an
R-S flip-flop, the circuit becomes a D flip-flop.

quency and pulse width (Fig. 3.24). The width of the
positive portion of the square wave or pulse (W or w,
respectively ) is the window . Figure 3.25 shows the
actual modification to the flip -flop circuit. Now no
matter what happens on the R and S inputs , the outputs
will remain unaffected until the clock signal goes HIGH.
The timing diagram of Fig. 3.26 shows what happens
when the clock signal locks out unwanted set and reset
signals. The flip-flop can change only when the clock
pulse is present.

If an inverter is now added to the clocked R-S flip-
flop, as shown in Fig. 3.27 , another type of flip-flop
with only one input can be built . This type of flip-flop,
called a D flip-flop or latch , is used very often for
temporary storage of data. The inverter prevents both
the R and S inputs from getting logic one inputs simul-
taneously . Also, there are only two possible input con-
ditions-a 0 or 1 on the D line. As you can see from the
transition table of Fig . 3.28, whenever the input is 1,
the output will become 1 after the clock pulse comes
along.

Sometimes the basic R-S flip -flop is needed, but it
must have the capability to respond to an R = 1, S = 1
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D of Qt+A

0 0 0

0

1

1

1

0

1 0 1

Fig. 3.28 The response of the D flip-flop is described
by this transition table.

K 0

J Cp 0

t

Fig. 3.29 A J-K flip-flop can be created by adding
two feedback inputs to the AND gates of the clocked
R-S inputs of the circuit in Fig. 3.25.

condition. By adding two feedback inputs to the AND
gates of the clocked R and S inputs, as shown in Fig.
3.29, another flip-flop called a J-K flip-flop can be
created. The K input (clear) replaces the reset function
and the J input does the same job as the S input. In
general, the J-K flip-flop functions similarly to the
R-S except that both inputs can become 1 simulta-
neously. When this occurs, whatever the output states
are, they get reversed. The J-K flip-flop must have a
clock signal to operate, just like the clocked R-S
flip-flop.

If Q = 0, K = 0, J = 0, and a clock pulse is applied,
nothing happens since the inputs are 0. When the inputs
change to JK = 01 and a clock pulse comes along, noth-
ing will happen if Q = 0 since the flip-flop is already reset.
However, if Q = 1, the AND gate connected to the R
input has a I output when the clock pulse occurs and
thus triggers the reset (Q goes to 0). Similarly, when
Q = 0, JK = 10, and a clock pulse is applied, the AND
gate feeding the S input has a 1 output, thus causing the
Q output to go to 1. However, if the flip-flop originally

J K Of Qt+A

0 0 0 0
0 0 0

0 0
0

0 0
0 0

0
0

Fig.3.30 The excitation table of the J-K flip-flop
shows all possible outputs for all possible input condi-
tions, even a 1-1 input for the J-K input terminals.

T -4

K Cp 0

t (A)

T

Fig.3.31 By connecting the J and K inputs together,
a T flip-flop can be made from a J-K flip-flop (a). The
T flip-flop (b) changes its output state every time an
input signal coincides with the clock.

J Q

MASTER

K Cp Q

Cp

R 0

SLAVE

S Cp 0

Fig. 3.32 If a J-K and an R-S flip-flop are cascaded,
a master-slave J-K flip-flop is created. It is often
used when triggering is desired only on the falling
edge of an input pulse.
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had an output of Q = 1 and it got inputs of JK = 10 and
a clock pulse, nothing gets through the AND gates and
the output remains at Q = 1. The special case of JK = 11,
Q = 0, and an applied clock pulse lets a 1 feed into the
set input, thus reversing the flip-flop's output, setting
Q = 1. If with Q = 1, the same input conditions are
applied, a 1 feeds into the R input, also causing the flip-
flop to reverse its output, and resetting Q to 0. A com-
plete excitation table is shown in Fig. 3.30.

By connecting the J and K inputs together, the
flip-flop can be made to reverse state every time a 1 input
is applied along with a clock pulse (Fig. 3.31). This type
of flip-flop, called a clocked T flip-flop because the
reversing action is called toggling, is very handy when
counting circuits are to be made.

The last type of flip-flop to be discussed here is a
combination of two flip-flops, as shown in Fig. 3.32.
When two flip-flops are used to act as one flip-flop, the
arrangement is referred to as a master-slave combina-
tion. In this circuit, when the clock input is a logic 1
to the master flip-flop, the J-K inputs control its output.
However, nothing takes place at the slave output since
the inverter changes the clock to logic 0 for the slave
flip-flop. When the master's clock goes to logic 0, the
slave clock input goes to logic 1, and the output of the
slave flip-flop obeys its R-S control inputs. Thus, the
J-K/ R-S master-slave flip-flop is said to trigger on
the falling edge of the input clock pulse.

Cascaded Flip-Flops Count

If flip-flops are connected as shown in Fig. 3.33,
they can be used to count the number of input pulses,
divide frequencies, shift data, or just store data. Cir-
cuits like those shown are indispensable for all com-
puter applications. Let's take a quick look at how some
of them work.

Starting with the counting circuitry of Fig. 3.34 and
the timing and output diagram of Fig. 3.35, assume that
all the flip-flops are J-K master-slave types. If you
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Fig. 3.33 Several flip-flops can be connected together
to (a) count the number of input pulses, (b) divide fre-
quencies, (c) shift data, and (d) store data.

look at all four outputs of the counting circuit at the
same time, the digital signals that appear on those lines
can represent a four-bit code for the binary numbers
0000 to 1 111 (decimal 0 to 15). Before any pulses arrive,
all flip-flops are set to zero, and if you look at their
voltage outputs, all outputs would be LOW (logic 0).
After the first count pulse, FF 1 changes state and its
output is a 1. When the next count pulse comes, FF1
changes its state again, and in doing so, it triggers FF2
so that the output of FF2 goes to logic I and FFI's out-
put is at logic 0. The next count pulse makes FFI's out-
put rise to logic I and has no other effect on the remain-
ing flip-flops, since J-K flip-flops only respond on the
falling edge of a waveform not on the rising edge.

The fourth pulse has a more devastating effect that
ripples all the way to FF3. On the falling edge of count
pulse 4, FF1's output goes to logic 0, thus triggering
FF2 also to change its output from I to 0. The change

R Q R Q

FF3 FF4

S CP S CP

16
(DIVIDER)

SHIFT
REGISTER

Fig.3.34 Detailed wiring diagram of a divide-by-16
counter circuit, a 7493.

COUNT

FFI
0

I II I I I I II I II
FF2

0

II I III
FF3

0

III II
FF4

0

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 1 0 I I

0000

0100

0010 0011 0100 0101 0110 0111 1000 1001 100 1011 1100 1101 1110 1111 0000 0001

CODES ARE READ FF4 FF3 J FF2 J FFI

FF4 IS THE YSB1 FFI IS THE LSB.

Fig. 3.35 Timing diagram and output pattern for a
four-stage counter.
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Flip-flops can also be used to transfer data from one
place to another. If several flip-flops are cascaded so
that both the inputs and both the outputs are connected,
as shown in Fig. 3.37, data entered on one end can be
pulled through to the other end. This type of circuit is
called a shift register. There are about seven different
varieties of shift registers: unidirectional shifters, bi-
directional shifters, recirculating shifters, parallel input/
parallel output, parallel input/serial output, serial
input/parallel output, and serial input/serial output.

Basically, a serial shift register is like a hollow
tube filled with Ping-Pong balls (Fig. 3.38). If a new
ball is pushed in one end, the far ball inside the tube will
be forced out. Let's use shaded balls to represent zeros

UT C INPUT B COUNT COUNT INPUTA

?( 1 0 ) I(1) ?(s) ?(4) p 1 ( 15)

_0

"T

CLEAR PRESET

DD OD

10'

-(7) (6)

OUTPUT OUTPUT
00 OC

74193

vT
CLEAR PRESET
OB OB

DATA UP DOWN DATA

10'

vT
CLEAR PRESET
OA OA

0

I
-1(2) (3) J(12) 13)

OUTPUT OUTPUT CARRY BORROW
OB QA OUTPUT OUTPUT

Fig. 3.36 Some commonly used multiple flip-flop counter circuits.

in FF2 causes FF3 to reverse its output state and make
its output logic 1. This rippling effect continues with all
the ensuing count pulses, and, unless the pulses stop,
the counting circuit continues to cycle from 0000 to
1111, back to 0000 and so on.

If you measure the frequency of the signals on the
output from each flip-flop, you'll note that each succes-
sive flip-flop divides the input clock frequency by 2.
So if you needed to divide by 2, 4, 8, or 16, all you have
to do is employ a few flip-flops and just use the tap you
want off the chain. There are many different types of
counting/ dividing circuits available; some of the most
common types are shown in Fig. 3.36.

DATA
INP

and white balls to represent ones. Inside the tube then,
is the bit pattern 1010101. If a zero is entered on the
left, then all bits shift right by one place, and the new
bit pattern is 0101010 (the one that was forced out is
discarded). When the output of the register is fed back
to the input, the data will not be lost, but rather go
in circles-thus the term recirculating. Some registers
include circuitry that permits control of the direction
of data flow-from left to right, right to left, serial to
parallel, or parallel to serial. Commonly used devices
are shown in Fig. 3.39.

Large arrays of flip-flops can be ganged together
to make memories for computer systems and temporary
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Fig. 3.36 (cont'd) Some commonly used multiple flip-flop counter circuits.
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Fig. 3.37 When the output of one flip-flop is directly connected to the input of another, and another, the cascaded array of flip-flops is
called a shift register.
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Fig. 3.38 A serial shift register can be likened to
this tube filled with black and white Ping-Pong balls.
Whatever comes in on one end forces something out
the other.
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turers, and probably close to the same number of
CMOS, PMOS, and NMOS circuits. In the TTL family
of circuits, the most prevalent series is the 7400 series
and its different variations-the 74L00, 74S00, 74H00,
and 74LS00. They are designed to function over a 0 to
70°C temperature range and from a 5-V power supply.

PARALLEL INPUTS

D
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E F G H
0 0 0 0

PRESET PRESET PRESET
S 0D S OF OF

CLOCK r0 CLOCK r0 CLOCK
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0
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8 GND CP NCA
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7491

Fig. 3.39 Some commonly used shift registers from
the TTL circuit family.

data storage areas for data being transferred or to be
displayed . The D flip-flop is ideal for temporary stor-
age, and arrays of four , six, or eight flip-flops in a single
package are commonly available.

Modern digital design treats these logic circuits as
building blocks; just consider their function and the
number of inputs and outputs . There are over 200 stand-
ard TTL circuits available from various manufac-
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Q

Y
PRESET
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R CLEAR 0H
0

OUTPUT
OH

OUTPUT

OH

Q

CLOCK CLOCK SHIFT/LOAD
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Standard TTL and 74LS circuits are listed in Ap-
pendix C. The other 74 series families are performance
variations of the original 7400 series: L refers to low
power, S to Schottky, H to high speed, and LS to low-
power Schottky. Don't get too confused by the part
numbers if you see a 5400 series; the parts are the same
as for the 7400 series except that they can operate over
a wider temperature range. Standard CMOS circuits
include the 4000 series and a 74C series; both are avail-
able from many vendors. Typical packages and sizes of
circuits are shown in Fig. 3.40, and a list of most avail-
able types is given in Appendix B.

Connecting the circuits to each other requires some
special checks and considerations. Starting with TTL,
here are some guidelines to follow when using logic
circuits:

TTL

1. Each circuit requires a +5 V dc source and a ground
connection.

2. Use a capacitor of about 0.01 pF connected across
the power supply and ground lines for every three
to five packages.
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Fig. 3.40 Typical IC packages used in computer
systems.

3. Each logic input or output can handle up to a maxi-
mum of 10 TTL inputs or outputs ; don't overload a
gate or other circuit.

CMOS

1. Each circuit usually requires a +5 to +15 V dc
source and a ground connection.

2. Same as Rule 2 for TTL.
3. Each logic circuit input or output can handle about

100 or more other CMOS circuit inputs or outputs,
but since they are designed for low power operation,
they may not be able to handle the comparatively
high current of TTL circuits.

NMOS and PMOS

1. Check the specifications carefully; most PMOS and
NMOS circuits made today feature TTL compati-

bility, which means that they operate from a 5 V
supply and can accept or deliver enough voltage
and current to handle one TTL input. Some of the
older devices require special voltages and interface
circuits.

2. Same as Rule 2 for TTL.
3. Since these circuits have very different intercon-

nection requirements and drive capabilities, read
the data sheets carefully.

A newer form of TTL and MOS logic circuit uses
what is now referred to as three-state logic. This
logic form has, in addition to the normal HIGH and

Fig. 3.41 A typical circuit for three-state logic devices.

LOW states, a third state that has no voltage associated
with it but instead merely presents a very high resistance
to the signal lines connected to the line.-The high im-
pedance reduces the current that flows in the circuit and
thus minimizes the power required and the loading
caused by many circuits being connected together.

Without three -state capability , a normal gate such
as a 7400 can have up to 10 other logic circuit lines
connected to its output before the output becomes over-
loaded. Each connected line requires 40 µA for a HIGH
level and -1.6 mA for a LOW level. So, when 10 lines are
ganged together , the total current can reach 400 µA for
a HIGH signal and -1.6 mA for a LOW signal. How-
ever, what is the purpose of that much current if the
circuits aren't really used all the time? That's where
three-state logic comes in. By disabling the output of
the gate driving the 10 lines or the inputs of the gates,
almost no current is used until the signals are actually
needed. This arrangement permits loads of up to 100
logic circuits to be connected to a single gate's . output
without overloading the gate.

The typical output circuit for three-state circuits
is shown in Fig. 3.41. When the base of Q1 is kept near
zero, Q 1 does not conduct and thus keeps Q2 turned off,
which, in turn , leaves point A in a "floating" state.
The impedance of the point is thus very high (equivalent
to that of a reverse -biased diode). If the base of Q1 is
raised to near Vcc, Q1 is turned on and it, in turn,
turns on Q2 , which then brings point A to a voltage
(logic 1) near Vcc also (assuming that the input to the
base of Q3 is near zero ). Now, however , if the base of
Q3 is brought HIGH , Q3 conducts and brings the voltage
at point A down to near zero ( logic 0). At any time, the
input to Q1 can be brought LOW, thus forcing point A
back to the high-impedance third state and disabling
the logic circuit.



CHAPTER 4

The Basic 5-100 Bus and the
Computer Mainframe

The computer systems that we'll look at through-
out the rest of the book use the same interconnect struc-
ture (bus) between the various boards used to compose
the computer. This bus structure, as mentioned in Chap-
ter 1, was started by MITS (now part of Pertec Computer
Co.) in its Altair 8800 microcomputer and has been
adapted by over 50 other manufacturers, who also offer
products that connect to the bus.

Basically, the Altair bus (more commonly referred
to as the S-100 bus) consists of 100 parallel lines either
made of wire or an etched pattern on a printed-circuit
card. When made in the form of a printed-circuit card,
such as the one shown in Fig. 4.1, taps are made every
inch or so for a connector (Fig. 4.2) to be inserted so
that the various computer cards can be plugged in and
thus interconnected by the bus. The printed-circuit
board that has all the connectors on it (typical boards
hold from four to 22 connectors) is often referred to as

Fig. 4.1 A typical S-100 bus motherboard. (Courtesy
Sigma Computers)

^^ atiaw^kaa^..

ITT

Fig. 4.2 Commonly used edge-card connectors for
the S-100 boards. (Courtesy Vector Electronics)

the "motherboard." Although both the Altair and
Imsai motherboards use 100-pin connectors, there are
some differences that prevent the same connector from
being plugged on both. The pin-to-pin spacing on the
rear of the connectors for the Altair and Imsai mother-
boards is 0.125 in., while the row-to-row spacing for
the Altair motherboards is 0.14 in. and 0.25 in. for the
Imsai motherboard.

Almost every one of the 100 pins of the bus has a
predefined function. Table 4.1 lists the functions as de-
fined by MITS for their 8800b computer system. (A new
standard definition for the bus has been sponsored by
the Institute of Electrical and Electronic Engineers. See
Appendix D for a capsule summary of the proposed
standard.) Many of the signal lines will have no meaning
to you at this point, but as our use of the bus grows,
you'll need all the functions. Basically, the pins of the
connector can be divided into five groups:

1. Power and ground lines
2. Address lines
3. Data lines
4. Control signal lines
5. Undefined lines (spares)

33
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Table 4.1 Definitions of the S-100 Pins

The S-100 Bus Handbook

The Altair 8800b system bus has 100 lines . These are arranged 50 on each side of the plug-in
boards. The following general rules apply to the Altair 8800b bus.

SYMBOLS a "P" prefix denotes a processor command /control signal . "S" denotes a
processor status signal.

LOADING All inputs to a card are loaded with a maximum of one TTL low power load
except for the Turnkey Module.

LEVEL All bus signals except those for the power supply are TTL compatible . Signals
whose names are barred ( DO DSBL , for example ) are active low (0 volts). All
others are active high (+5 volts).

In the listing below, those signal names accompanied by * are ineffective or not used in the Altair
8800b Turnkey computer.

Number Symbol Name Function
1 +8V +8 volts Unregulated input to 5 volt regulators
2 +18V +18 volts Positive unregulated voltage
3 XRDY External Ready For special applications: pulling this line low causes the processor to enter a wait

state and allows the status of the normal ready line (PRDY) to be examined.
4 VI 0 Vectored Interrupt Line 0

5 VI 1 Vectored Interrupt Line 1

6 VI 2 Vectored Interrupt Line 2

7 VI 3 Vectored Interrupt Line 3

8 VI 4 Vectored Interrupt Line 4
9 VI 5 Vectored Interrupt Line 5

10 VI 6 Vectored Interrupt Line 6
11 VI 7 Vectored Interrupt Line 7

12 XRDY2 Extra Ready line For special applications.
13

to
17

} To be assigned

18 STA DSB STATUS DISABLE Puts buffers for the 8 status lines in their high -impedance third state. In this state,
no information can be transferred.

19 C/C DSB COMMAND /CONTROL Puts the buffers for the 6 command /control lines in their high-impedance third
DISABLE state.

*20 UNPROT UNPROTECT Input to the memory protect flip-flop.
*21 SS SINGLE STEP Indicates that the computer is in the process of performing a single step.
22 ADD DSB ADDRESS DISABLE Puts the buffers for the 16 address lines in their high-impedance third state.
23 DO DSBL DATA OUT DISABLE Puts the buffers for the 8-data out lines in their high-impedance third state.
24 02 Phase 2 clock
25 01 Phase 1 clock
26 PHLDA Hold Acknowledge Processor output signal which appears in response to the HOLD signal indicates

that the data and address buffers will go to the high -impedance third state.
27 PWAIT WAIT Processor output indicates that the processor is in the WAIT state.
28 PINTE Interrupt Enable Indicates interrupts are enabled ; displays contents of the CPU interrupt flip-flop.

This flip-flop may be set or reset by the El or DI instructions . When reset, it
prevents the CPU from acknowledging interrupt requests.

29 A5 Address Line 5
30 A4 Address Line 4
31 A3 Address Line 3
32 A15 Address Line 15
33 A12 Address Line 12
34 A9 Address Line 9
35 DO1 Data Out Line 1
36 DOO Data Out Line 0
37 A10 Address Line 10
38 DO4 Data Out Line 4
39 DO5 Data Out Line 5
40 D06 Data Out Line 6
41 DI2 Data In Line 2
42 D13 Data In Line 3
43 D17 Data In Line 7
44 SM1 M1 Status output that indicates that the processor is in the fetch cycle for the first

byte of an instruction.
45 SOUT OUT Indicates that the address bus contains the address of an output device and the

data bus will contain the output data when PWR is active.
46 SINP INP Indicates that the address bus contains the address of an input device.
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Table 4 . 1 (cont 'd) Definitions of the S-100 Pins

Number Symbol Name Function
47 SMEMR MEMR Indicates that the data bus will carry memory read data.
48 SHLTA HLTA Acknowledges a HALT instruction.
49 CLOCK Clock Inverted output of the 2 MHz oscillator that drives the clock.
50 GND Ground
51 +8V +8 volts
52 -18V -18 volts

*53 SSW DSB SENSE SWITCH DISABLE Disables the data input buffers so that the inputs from the sense switches may be
strobed onto the bidirectional data bus at the processor.

54 EXT CLR EXTERNAL CLEAR Clear signal for I/O devices.
55 RTC Real Time Clock
56 STSTB STATUS STROBE

*57 DIG1 DATA INPUT GATE #1 Front panel control line. It is an output signal from the Display/Control logic
that determines which set of Data Input drivers have control of the CPU board's
bidirectional data bus. If DIGI is high, the CPU drivers have control; if low, the
Display/Control logic drivers have control.

*58 FRDY Front Panel READY
59

to } To be assigned
67

)))68 MWRT MEMORY WRITE Indicates that the current data on the Data-Out bus is to be written into the
memory location currently on the address bus.

69 PS PROTECT STATUS Indicates the status of the memory protect flip-flop on the memory board cur-
rently being addressed.

*70 PROT PROTECT Input to the memory protect flip-flop on memory board currently being
addressed.

*71 RUN RUN Indicates that the RUN/STOP flip-flop is reset.
72 PRDY READY Input that controls the run state of the processor. If the line is pulled low the

processor will enter a WAIT state until it is released.
73 PINT INTERRUPT REQUEST The processor recognizes a request on this line at the end of the current instruc-

tion or while halted. If the processor is in the HOLD state or the Interrupt
Enable flip-flop is reset it will not honor the request.

74 PHOLD HOLD Requests the processor to enter the HOLD state. This allows an external device
to gain control of the bus as soon as the processor has completed its current
machine cycle.

75 PRESET RESET While activated, the contents of the program counter are cleared and the instruc-
tion register is set to 0.

76 PSYNC SYNC Provides a signal to indicate the beginning of each machine cycle.
77 PWR WRITE Used for memory write or I/O control. Data on the data bus are stable while PWR

is active.
78 PDBIN DATA BUS IN Indicates to external devices that the data bus is in input mode.
79 AO Address Line 0
80 Al Address Line 1
81 A2 Address Line 2
82 A6 Address Line 6
83 A7 Address Line 7
84 A8 Address Line 8
85 A13 Address Line 13
86 A14 Address Line 14
87 All Address Line 11
88 D02 Data Out Line 2
89 DO3 Data Out Line 3
90 DO7 Data Out Line 7
91 D14 Data In Line 4
92 D15 Data In Line 5
93 D16 Data In Line 6
94 D11 Data In Line 1
95 DIO Data In Line 0
96 SINTA INTA Acknowledge signal for interrupt request.
97 SWO WRITE OUT Indicates that the operation in the current machine cycle is a WRITE memory or

output function.
98 SSTACK STACK Indicates that the address bus holds the push down stack address from the Stack

Pointer.
99 POC Power-On-Clear

100 GND Ground
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The power and ground lines provide the voltage
needed by the computer. There are six pins assigned to
provide the three unregulated voltages and a ground
return: Pins 1 and 51 have the +8 V supply, pins 50 and
100 have the ground return, pin 2 has the +18 V supply,
and pin 52 has the -18 V supply. There are also 16
address lines that are used to provide the memory ad-
dress to the memory circuits. These lines are scattered
such that lines AO to A2 are on pins 79 to 81; A3 to AS
are on pins 31, 30, 29; A6 to A8 are on pins 82 to 84;
A9 is on pin 34; A10 is on pin 37; All is on pin 87; A12
is on pin 33; A13 and A14 are on pins 85 and 86; and
A 15 is on pin 32.

For the transfer of instructions and data to and
from the microprocessor, 16 other lines are put aside-
eight for data that feed into the processor (DI0 to D17)
and eight for data that are fed out of the processor (DO0
to D07). These lines are also scattered on the connector,
with DI0 on pin 95, D12 and D13 on pins 41 and 42, D14
to D16 on pins 91 to 93 and D17 on pin 43. The DO lines
are set up so that DO0 is on pin 36, DO! is on pin 35,
D02 and D03 are on pins 88 and 89, D04 to DO6 are
on pins 38 to 40, and D07 is on pin 90.

Before looking at the fourth group, the control sig-
nal lines, let's quickly look at the pins left as spares,
with no preassigned functions. Connector pins 13 to 17
and 59 to 67 have no assigned functions and can be used
by you to carry any signal desired when a custom circuit
is designed. However, some manufacturers of S-100
compatible boards have already selected a few of these
lines so that their own boards can take advantage of
these available signal paths. So far, 52 of the 100 pins
have been used by basic interconnections to the boards.
The remaining 48 bus lines are used to carry timing and
control signals for the various sections of the computer.

Pins 4 to 11 of the connector are assigned for inter-
rupt signals. These signals, generated by external con-
ditions, can interrupt the processor so it stops whatever
it is doing and starts to perform a specific program in
answer to the signal. The clock signals generated by
the processor's timing circuit are available on pins 24
and 25 as phase 2 and phase 1, respectively, and on pin
49 (the inverse of phase 2).

Two pins are assigned an external ready function,

which permits an external signal fed in to either of these

computer lines (pins 3 and 12) to stop the microproces-

sor (when the signal is logic 0), force it to enter a WAIT

(pause) state and allow the status of the processor's nor-

mal ready line (PRDY) to be examined.

Each of the remaining 35 control lines has a dif-
ferent function and the simplest way to examine what
each line does is to go in numerical sequence starting
with pin 18. This is the status disable line and when the
line is brought to a logic 0 condition, it disables the
buffers for the eight status bits (pins 44 to 48, 96 to
98) and puts the buffer outputs in their high-impedance
state, thus preventing any status information from be-

ing transmitted from the processor board to any other
part of the computer. Pin 19 serves as the command
control disable line. When it is brought to a logic 0 con-
dition it places the three-state buffers for the six com-
mand/control lines (pins 26 to 28 and 76 to 78) in their
high-impedance third state, thus preventing the lines
from performing any command or control functions.

Pin 20 is a memory unprotect/protect control line-
when kept at a logic 1, it permits information to be
written into or read from the computer's memory;
when brought to a logic 0, it prevents information from
being written into the memory but information can still
be read out. This control line is usually manually set
to either its 1 or 0 state by a switch. Connector pin 21
buses a signal that tells the processor to execute only
a single instruction (often known as single step). When
pin 22 is brought to a logic 0 state, it causes the 16 ad-
dress buffer outputs on the processor card to go to the
high-impedance third state, thus preventing the mem-
ory from being addressed by the processor. Pin 23, when
brought to logic 0, performs the same job on the eight
DO buffer outputs.

One of the six command/control outputs from the
processor, pin 26 goes to logic 1 when the processor
receives a HOLD signal, otherwise pin 26 stays at a
logic 0 level. Pin 27, also a processor output, goes to a
logic 1 to indicate when the processor has been placed
in the WAIT state; otherwise the line stays at a logic 0
level. The interrupt enable line, pin 28, is also an output
from the processor. When at a logic 1, it indicates that
the processor interrupt is enabled and that an input to
any of pins 4 to 11 or pin 73 will interrupt the processor.
This line (pin 28) can be controlled by the El and DI
instructions, which set the processor's interrupt flip-flop
to logic 1 or 0, respectively. When at logic 0, it prevents
the processor from acknowledging interrupt requests.

The next five pins (44 to 48) are status outputs from
the processor. Pin 44, when at logic 1, is used to indicate
that the processor is in the fetch portion of an instruction
cycle. Pin 45, when at logic 1, indicates that the address
bus contains the address of an output device and the data
bus will contain the output data when PWR line (pin
77) is at logic 0. Pin 46, when at logic 1, indicates that
the address bus contains the address of an input device.
Pin 47, when at logic 1, indicates that the data bus has
data that have been read from memory. And pin 48,
when at logic 1, acknowledges that the processor re-
ceived a HALT instruction, and is stopping.

There are still 21 control lines left, so let's forge on-
ward. Pin 53, when at logic 0, disables the data input
buffers to the processor so that the inputs from man-
ually set control panel sense switches can be loaded
onto the processor's data bus. On pin 54 is an EXTER-
NAL CLEAR signal, which when brought to logic 0
clears input/output devices. Pin 55 is used for a REAL-
TIME CLOCK signal, that can be used to time events
external to the computer. The STATUS STROBE sig-
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nal on pin 56 is an output from the central processor
board that tells the rest of the computer system that
status information is available on the status lines.

A control line whose state is determined by front-
panel operations, pin 57, combines with other signals
on the CPU card to enable the data-input buffers so
data can flow from the data bus to the input of the pro-
cessor. Pin 58 of the bus handles a signal coming from
the front panel that indicates to the CPU when the com-
puter is ready for operation. To tell the memory that
data are to be written into the array, pin 68 carries a
MEMORY WRITE strobe signal generated by the com-
bination of the signals on bus pins 45 and 77 or the front-
panel DEPOSIT switch. Pin 69, when at logic 0, indicates
that the state of a program-controlled flip-flop on MITS
memory boards is in the PROTECT mode, thus pre-
venting data from being loaded into the memory. When
at logic I the line indicates that the memory is
unprotected.

The next pin, connector pin 70, provides a manual
control path for a front panel switch to the memory
protect control flip-flop on the MITS memory boards.
This permits a front-panel switch to protect or unpro-
tect the memory. Pin 71 shows the state of the front
panel's RUN flip-flop. When the line is at logic 0 the
processor is in the halted state, and when at logic 1 the
processor is running a program. The next line, pin 72,
is a signal generated by the front panel and it controls
the RUN state of the processor. When pulled to logic 0,
the line forces the processor to enter a WAIT state and
stay there until the line goes to logic 1. When at logic 1,
the line permits the processor to run normally.

Pin 73 has a Signal that controls the interrupt capa-
bility of the processor. When brought to logic 0 the
processor recognizes it as a request so that at the end
of its current instruction the processor goes to handle
the interrupt. If the processor is in the HOLD state or
the interrupt enable flip-flop in the processor is set, the
request will not be honored. When kept at logic 1, the
line has no effect on the processor. The next line, pin
74, is used to request that the processor enter the HOLD
state when brought to logic 0. This permits another de-
vice to control its bus as soon as the processor has fin-
ished its current machine cycle. Clearing the processor,
line 75 initializes the program counter and instruction
register of the processor when brought to logic 0.

An output from the processor, pin 76, provides a
pulse to the rest of the system each time the processor
begins a machine cycle. Pin 77 is used by the processor
to transmit the memory write output operations. Data
on the data bus are stable when pin 77 goes to logic 0.
The next line, pin 78, handles an output signal from the
processor. When at logic 1, it indicates to external de-
vices that the data bus is in an INPUT mode. Skipping
down to pin 96, this processor output line, when at
logic 1, acknowledges that the processor has received
an interrupt request. Pin 97, also an output from the

processor , is used to indicate that the operation in the
current machine cycle is a write to memory or an output
function when at logic 0. The next signal, a processor
output on pin 98, when at logic 1, indicates that the ad-
dress bus holds the push-down stack address from the
stack pointer. Finally, the last signal line , pin 99, is an
output from the processor that occurs when power is
turned on. When the line goes to logic 0, it generates a
CLEAR signal to initialize the entire computer system.

Control and Signal Lines Hold the System
Together

All 100 bus lines interconnect the various cards
that comprise an Altair or Imsai computer system. And
each system consists of a box that contains the various
boards that perform the various functions-central pro-
cessor, memory, input/output, and peripheral control.
On the front of the computer is a control panel that con-
tains switches and indicators that permit you to manu-
ally control all computer operations. Often referred to
as a front panel, the array of control switches (see Fig.
1.9) can basically be grouped into three areas-ad-
dress/data switches, basic machine control, and sec-
ondary control.

Address and data switches permit data to be manu-
ally loaded into selected memory locations or informa-
tion in memory locations to be examined. Basic ma-
chine control switches include functions such as RUN/
STOP, RESET/EXTERNAL CLEAR, POWER ON/
OFF, MEMORY EXAMINE/EXAMINE NEXT, and
MEMORY DEPOSIT/DEPOSIT NEXT. Other con-
trol functions such as SINGLE STEP or SLOW RUN,
MEMORY PROTECT/ UNPROTECT, ACCUMULA-
TOR DISPLAY/LOAD and ACCUMULATOR IN-
PUT/OUTPUT are not absolutely necessary for man-
ual machine operation, but they are helpful.

The RUN/STOP switch provides direct control of
the computer by controlling the state of the READY
line of the bus. The RESET/EXTERNAL CLEAR
switch provides a pulse that resets the central processor
when flipped to the RESET position and when moved
to the EXTERNAL CLEAR position provides a
CLEAR command to all external input/output equip-
ment. The POWER ON/OFF control is self-explana-
tory. The MEMORY EXAMINE/EXAMINE NEXT
permits addresses to be set on the address switches and
then the contents of that location examined by flipping
the switch to the MEMORY EXAMINE position. The
next sequential memory location can be examined
by then flipping the switch to the EXAMINE NEXT
position. Once the desired memory address has been
set and examined, data can be set on the address/data
switches and then loaded into that location by flipping
the MEMORY DEPOSIT/DEPOSIT NEXT switch
into the DEPOSIT position. Now data can then be set
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on the data/address switches and loaded into the next
sequential memory location by flipping the switch to
the DEPOSIT NEXT position.

Non-basic functions such as the SINGLE STEP or
SLOW RUN switches permit the processor to execute
either a single instruction or operate at a rate of about
two machine cycles per second (normal operation is
500,000 cycles per second). A MEMORY PROTECT/
UNPROTECT switch permits manual control of the
bus MEMORY PROTECT/UNPROTECT line, thus
preventing undesired memory-write operations when
in the PROTECT position, and permitting write opera-
tions in the UNPROTECT position. Accumulator con-
trols are handy for displaying the contents of the ac-
cumulator and altering the data if necessary. Accumu-
lator input/output controls permit data present at an
I/O device to be loaded into the accumulator to an out-
put device.

Front-panel indicators are used to display address,
data, and several status signals (HOLD, WAIT, RUN,
INTERRUPTS ENABLED). However, when the com-
puter operates at full speed all indicators that are ac-
tually flickering on and off will appear to be on all the
time. Signals from the front panel connect to the bus
and from there are distributed to the various circuit
cards that make up the computer system. The main
card controlled by the various front-panel switches is,
of course, the central processor. So, without any fur-
ther delay, let's examine the central processor card of
the Altair and Imsai computer systems.

The CPU Works like This ...

The basic design of the Altair and Imsai CPU cards
is very similar-both are built around an 8080A micro-
processor and provide buffering on the output signal
lines so that they can drive signals on the S-100 bus. The
actual circuitry on the two boards really isn't important,
but the signals entering and leaving the board are.
Basically, each board contains the microprocessor, a
crystal controlled clock that generates all the timing
signals, a latch to hold all the status information, and
the various line drivers and receivers to connect with
the bus (Fig. 4.3). Also on the board are the voltage regu-
lators needed to supply constant voltages to the circuits.

The bus interface signals can be grouped into seven
classes of signals:

1. Address bus
2. Data bus
3. Timing
4. Power
5. Input control lines
6. Output control lines
7. Status outputs

Not all of the 100 bus pins are used by the CPU card
to do its job. However, more than half of the pins are
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Fig. 4.3 The heart of either the Altair or Imsai systems
is the 8080-based central processor board. Both
boards are identical in basic operation and their block
diagrams, (a) Altair and (b) Imsai, show similar func-
tions performed. (Courtesy Pertec and Imsai)

8800b
BUS

needed. The address and data bus account for 32 lines,
timing accounts for only three, power lines include six
pins, and the other functions add up to another 27 or
28 lines, depending on whether the board comes from
Imsai or MITS. The actual schematics of the CPU
boards (Altair 8800b and Imsai 8080) are shown in
Appendix C.

The CPU board is the main source of most of the
control signals on the S-100 bus. To start with, all
three clock signals originate on the CPU card (pins 24,
25, and 49), all nine status signals (pins 44 to 48, 56, and
96 to 98), the POWER ON CLEAR signal (pin 99), and
the HOLD, WAIT, INTERRUPT, SYNC, POWER,

PDBIN
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and DATA bus in signals (pins 26 to 28 and 76 to 78)
all come from the CPU. Inputs to the board include an
ADDRESS DISABLE line (pin 22), a DATA BUS OUT
DISABLE (pin 23), a DATA BUS IN DISABLE (pin
57), a STATUS DISABLE (pin 18), a PRESET IN-
PUT (pin 75), two EXTERNAL READY lines (pins
3 and 12), two READY lines (pins 58 and 72), an IN-
TERRUPT input (pin 73), a HOLD line (pin 74), and a
COMMAND CONTROL DISABLE input (pin 19).
The difference between the Altair and Imsai 8080 CPU
boards is pin 12-the Altair board uses that pin for the
second EXTERNAL READY signal, which is not avail-
able on the Imsai board.

In addition to the S-100 bus interface, each CPU
card contains another interface bus that connects to
the board that contains the switches and displays of the
front panel. This eight-line interface is just a buffered
version of the data bus (MITS board) or an unbuffered
version (Imsai board) that permits data to be manually
loaded into the CPU by the front panel.

The 8080 CPU boards from Pertec and Imsai are
not the only CPU boards that can mate with the S-100
bus. Other companies offer boards that perform the
same function-and some of the boards don't even use
the 8080 processor. Since the S-100 bus was introduced
in 1974, many new microprocessors such as the Z-80,
the 6800, the 6502, and newer versions of the 8080 (the
8085), have been adapted to mate with the S-100 bus.

These next-generation CPU boards offer faster operat-
ing speeds, more or different instructions, and more
flexibility for the user.

Basically, any of the other S-100 CPU boards con-
tains the same circuitry as the MITS or Imsai boards.
There will be some subtle differences in the way pro-
cessor control lines are interfaced to the bus, but the
board will still accept data and instructions, perform
the operations, and deliver data back out. If the micro-
processor on the board is not an 8080, there will be some
extra logic on the board to supply the extra control sig-
nals needed by the rest of the system that are not gen-
erated by the new processor.

There are more than 20 different CPU boards avail-
able for the S-100 bus system, from as many manufac-
turers. In addition to the schematics for the 8080-based
Altair and Imsai boards in Appendix C, a diagram for
the Xitan (Technical Design Labs) Z-80 board is
included.

The CPU and its front panel are needed for a mini-
mal computer system but it's still lacking two major ele-
ments to perform any useful functions-memory and
input/output sections. The memory section is used to
hold instructions and data that the CPU will operate
with while the I/O section permits the CPU to com-
municate with external machines to provide data en-
try or output.



CHAPTER 5

Computer Memory Systems

Without some form of memory, the computer is just
a useless pile of electronic circuits. For a computer to
work it must be able to store instructions and data. And
to store the instructions and data there are three main
types of memories that can be used to hold information:

1. Solid state memories, with no moving parts. These
devices typically consist of read/write and random-
access memories built from flip-flops for temporary
storage, and programmable read-only random-
access memories for permanent storage.

2. Magnetic memories, using cassettes, cartridges, or
flexible magnetic discs. These provide permanent
but alterable storage for data and instructions.

3. Paper tape storage, using holes punched in paper
tapes to hold non-alterable data or instructions that
must be loaded into the computer.

This chapter will discuss only the first family of
memory devices, and subsequent chapters will cover the
other memory types. Within the family of solid-state
memories there are many different types that store vari-
ous amount of information. As mentioned back in Chap-

Fig. 5.1 The random access memory of a computer
is very similar to this mailman's sorting bin set-up-
any item can be retrieved just by knowing the row and
column number.

ter 2, the basic memory element of solid-state memories
is the flip-flop and by connecting the flip-flops in vari-
ous ways, large arrays of serial memories (shift registers)
or randomly accessible memories can be built.

The Random-Access Memory: What Is It?

Computer memory arrays are often called random-
access memories because the same amount of time is re-
quired to reach any location within the array. The ar-
ray can be likened to a mailman 's letter-sorting box with
a different slot for each person on the delivery route (Fig.
5.1). Letters in the slots can be said to represent I s and
no letter (an empty box) can represent Os. If the mail-
man's route consists of 64 blocks set up in a grid of 8 X
8 blocks, any one block of mail can be accessed in the
same amount of time just by knowing the row and
column number (street and avenue). Much the same
way, an array of flip-flops can be accessed by defining
the row and column of the desired flip-flop (Fig. 5.2).

For most microprocessor memory systems' each
memory location contains eight bits of data, much like
the eight vertical columns of letters slots. The horizontal
rows then represent words of memory. To better famil-
iarize yourself with the terminology of memory circuits,
here are some definitions of many of the commonly
used terms:

Memory Cell. A device or circuit subsection that
is used to hold a single bit of computer data. A single
flip-flop can be called a cell.

Memory Word. A word consists of several com-
puter bits delivered simultaneously to a system. Com-
mon numbers of bits used to make up a word in most
computers start at four bits and go as high as 40 or more.

Byte. A collection of eight binary bits, sometimes
equivalent to a complete word, as in many microcom-
puter systems, or used to signify an 8-bit portion of a
larger word. When the word size is the same size as a
byte the two are often used interchangeably.

Nibble. A fairly recent addition to the designer's
vocabulary, this word refers to a 4-bit grouping of binary
numbers, or half of an 8-bit byte.

Random-Access Memory. This type of memory
circuit permits information to be written to or read from
any storage cell or word in the same amount of time.
Commonly abbreviated as RAM.

40
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Fig. 5.2 Inside a semiconductor memory, the storage cells are arranged just like the mail sorting bins.

Read-Only Memory. This is a special form of ran-
dom-access memory from which information can only
be read out. Information in these memories cannot be
altered once it is put in by the memory manufacturer.
It is commonly abbreviated as ROM, and it is a form
of RAM.

Programmable Read-Only Memory. A form of
ROM, the programmable ROM, or PROM, lets the user
enter in data or instructions to be permanently stored.
There are different types of PROM, some of which use
microscopic metal links (called fuses) that must be
burned away by large current pulses for programming,
and once burned cannot be restored. Other types store
electrical charges in a microscopic dielectric material
to represent binary bit patterns and can be wiped clean
(erased) by shining an ultraviolet light through a clear
quartz window on top of the package and then repro-
grammed. Whether the fused-link PROM or the UV
EPROM is used, they are indispensable for microcom-
puter programming.

Memory Size. The number of bits or bytes that
are available in the memory circuits. The qualifier bits
or bytes should be present to make clear the capacity of
the memory. For instance, the 8080A or Z-80 can handle
a memory size of 65,536 bytes (often rounded off to 64k
or 65k), or 524,288 bits.

Memory Bank. A term often used to refer to the
entire processor memory, although individual boards
that contain 4096, 8192, 16,384, 32,768 or 65,536 bytes
(4k, 8k, 16k, 32k, and 64k) are often referred to as 4k
banks, 8k banks, etc.

Memory Address. This is the designation used to
determine where the desired memory word is located in
a large array of words. It is much like the street address
of your home, telling someone where to look.

Access Time. This is the time required by the
memory to output the contents of a location and is meas-
ured from the time it first received a command to look
up a word until it presents the word at its output.

Cycle Time. The cycle time is the access time plus
the time necessary for the memory circuit or circuits to
prepare themselves for the next request.

Read (Fetch), or Write (Store) Operation. This is
the sequence of signals that locates the memory cell or
cells from which or into which information will be trans-
ferred (written or stored).

Most semiconductor read/write RAMs lose all the
information stored in them when power is shut off; all
ROMs will retain their stored data and when power is
returned data will be present. ROMs, in general, re-
quire no timing signals to control the memory. Usually,
a single control signal is needed to tell the memory to
get ready to be addressed. Once addressed, the memory
outputs the contents of the location and that's that.

Some read/ write RAMs perform similarly. These
types are referred to as static RAMs. There are, though,
many other types of RAMs that require special timing
signals to control the memory and make sure all the
internal circuits operate in the proper sequence. These
memory circuits are called dynamic memories because
timing signals are constantly present to replenish the
data stored within the memory cells. This is necessary
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1024-bit static memory circuit.

because in dynamic RAMs data bits are stored in tran-
sistor-capacitor cells that are slightly "imperfect"-the
charge in the capacitor that represents the data leaks
away. Thus, every fraction of a second, the charge must
be replenished-this process is referred to as the dy-
namic memory refresh and is very important.

Although what goes on inside RAM is important to
the RAM designer, as a user you don't really have to
know about these processes as long as you supply the
proper signals to the inputs of the circuits. However,
when you gather together components for a memory

2102's(8)
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AS

Al

A2

A3

A4

AO

DOD DO1 002 D03

system you must make some important decisions be-
fore buying components.

1. Decide whether you will use static or dynamic
memories in each of the banks. All circuits in each bank
(on each board) should be the same type, although you
can often mix banks if each bank appears identical to
the processor circuits.

2. Decide on the speed of the memory circuits in the
memory system (access and cycle times). The maximum
speed is often determined by the speed of the processor
or the memory itself-the faster the processor clock,
the shorter the access time required. For instance, the
8080A CPU card operates at a 2 MHz clock rate and
therefore, for the memory to be ready every clock cycle,
it must have a cycle time of 1/(2 MHz) or 500 ns. Nor-
mally, access times are shorter or equal to the cycle time
so all you have to look for is the minimum cycle time
specification to pick the right speed memory. If the
processor runs faster than the memory, special allow-
ances can be made by programming the processor to
wait for the memory to finish.

3. Lastly, decide on how large a memory array you
want on a memory board. Typical sizes are 4096, 8192,
12,288 and 16,384 bytes for static memory boards, and
16,384 to 65,636 bytes for dynamic memories on a sin-
gle board.

Start with the Static Memories

The most common static memory circuit available is
the 2102 RAM (Fig. 5.3). This circuit, housed in a 16-
pin DIP, contains 1024 storage cells arranged in an ar-
ray of 1024 X 1. Each of the 1024 cells can be accessed
by supplying a binary number to the 10 address lines
(A0 to A9). Data to be fed into the memory must be sent
to the Di„ input and data to be read out appear at the
D0D5 pin. Another line called the R/ W line controls
whether the RAM is performing a read or write opera-
tion. When the line is HIGH a read operation can be
done and when LOW a write operation can be per-
formed. The last control line is a chip-select line which,

D04 D05 006 D07

R/W

+5V

GND

Fig. 5.4 To access eight bits at a time, eight 2102s must be connected so that the same location in each is accessed at the same time.
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when HIGH, puts the data output line into a high-imped-
ance state, permitting many RAM output lines to be
wire-ORed together without loading the outputs. When
LOW, the output assumes either its 1 or 0 state, as
determined by the state in the addressed cell. The other
two pins of the package are used to supply power to
the array (+5 V and ground).

If eight of the 2102s are connected so that all the
outputs appear at the same time you have the bare es-
sentials of a lk X 8 bit memory (Fig. 5.4). All the ad-
dress lines must be connected in parallel so that all the
A0s are connected, all the Als, etc. Next, all the chip-
select lines can be connected together and wired to a
ground line since there are no other banks of RAMs
to select from. All the R/W lines can also be connected
together and this common connection is used to control
the simultaneous operation of all eight RAMs. Each
data input line from the RAMs must be kept separate,
just like the data output lines. Both sets of lines are
eventually connected to the DI and DO buses of the
mainframe bus.

Actual memory boards used in the S-100 systems
have a lot of other circuitry included. For starters, the
array of eight 2102s is repeated seven more times and
then some special circuitry must be added to control the
flow of data, to decode the memory address and to
buffer the memory outputs (Fig. 5.5). A typical 8-kbyte
memory board, then, might have the following struc-
ture: Eight 1-kbyte banks of 2102s are set in an array so
that all 10 address lines are connected in parallel and
the chip-select lines from each array of eight 2102s are
connected to a decoder (typically a BCD-to-decimal)
and enable circuit. The decoder determines which of the
eight banks is accessed by decoding address lines A101
A11, and A12 from the S-100 bus.

Another circuit, possibly consisting of three exclu-
sive-OR gates, three switches, and some NAND gates
can be used to decode address bits A13, A14, and A15 to
place the 8k bank at any one of eight possible memory
areas in the overall 64k address range. For instance, if
all three switches are open the board will respond to
address locations 0000 to 8191. However, if an address
greater than 8191 appears, the decoding circuit does
not enable any of the RAMs in the bank, and the entire
8k bank is disabled and another bank set to respond to
this address will output the data.

Signals that flow into and out of memory boards
are very straightforward-the 16 address inputs, the
eight data inputs, and the eight data outputs for start-
ers. Next are the control signals such as the MEMORY
WRITE input, the DATA BUS INPUT ENABLE, a
MEMORY READ ENABLE signal, and input and
OUTPUT ENABLE signals inputs. Control outputs from
the board include a status indicator line (PROTECT or
UNPROTECT) and a READY line. Most memory
boards use the same control line and have the same
address and data buses. Depending on the memory cir-

cuits used, the board may require just the 8 V connec-
tion to the supplies or also the ±18 V connections as
well. Some boards also have provisions for an external
battery backup so if power fails, data held on the board
won't be lost.

Recently developed static memory circuits can
squeeze even more into a single package. For instance,
just now available in large quantities are 4096 X 1 bit
memory circuits. With these arrays only 16 packages are
needed to make an 8192 X 8 bit memory. Since the pack-
ages (18, 20, or 22 pin) don't require much more space,
32 of them can be comfortably put on a single card that
plugs into the computer mainframe, thus permitting up
to 16,384 bytes on a single card. Pertec, Seals Electron-
ics, and Xitan (Technical Design Labs) are just some
companies that offer the boards (Fig. 5.6).

Memory boards that use dynamic memory circuits
require several additional control signals for operation.
In most cases, timing signals from the S-100 bus must be
used to time refresh operations so they don't interfere
with the computer when it is trying to access or write data.
Typical additional signals then would include the clock
phase I or phase 2, the RUN, WAIT, and HALT lines,
the Ml status line, and the SYNC line, which can all be
used by the memory board to handle timing.

The one disadvantage of dynamic and static RAMs
is that, when power is turned off the RAMs lose all the
information held inside, whether that information is
data or instructions. When the computer is set up with a
CPU card as described in Chapter 4 and some static
and dynamic RAM cards you are ready to enter a pro-
gram via the front-panel switches and test it out. The
user may play a short game with the indicator lights, or
learn how to perform basic machine operations such as
loading data from the switches, reading the data back
out, or doing simple mathematical and logic routines.
However, after all the switch flipping and light blinking
you shut off the power and the next time you turn the
power on you must start all over again.

Read-only memories can save you many of the
switch-flipping operations necessary to get the com-
puter ready for operation. Without the ROMs, to pre-
pare the computer you must do many different switch
operations, depending on the function you want the
computer to perform. If, for instance, you want the
computer to accept information from a CRT terminal
or teletypewriter or send information to the terminal,
not only must you put instructions into the computer's
memory to tell it how to handle the incoming or out-
going data but a special interface circuit must be
plugged into the main bus to change the serial informa-
tion from the terminal into parallel information for
storage in the computer's memory or the reverse. (More
about the interface circuit and the actual instructions
in later chapters.)

Every time you turn power on you'll have to ini-
tialize the system by hand-a tedious and unnecessary
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Fig. 5.5 Multiple banks of eight 2102s must be con-
nected to a decoding circuit so that one of eight banks
can be enabled when the computer addresses the
memory and tries to read or write data (a ). A complete
memory circuit for an 8 k x 8-bit array, designed by
Vector Graphic Corp., is shown in (b), and an equiva-
lent version from Seals Electronics is shown in (c).
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job if you take advantage of any of the forms of read-
only memories. There are many available prepro-
grammed ROMs that companies offer for many differ-
ent applications, and not just for the 8080A and Z-80.
The ROMs that hold the special operating programs
do not work by themselves; in addition to the ROM, a
RAM must be used to hold the information being en-
tered or outputted and intermediate computational

results.
When the instruction is executed it usually causes

the program counter inside the processor to change
value and access another memory location that starts
the initialization procedure. This process is often called
vectoring since one address points to another address.
Once the initialization procedure is completed (it usu-
ally occurs so fast that when the button is pressed you
can start immediately), a program designed to accept
inputs and deliver outputs to a terminal and handle
other functions such as displaying the data and loading
information is usually loaded into the RAM from the
ROM storage area. This type of program is usually
called a monitor program since it oversees the opera-
tion of the computer and its peripherals.

The process of loading information from ROM into
RAM is usually referred to as bootstrap loading and is
used in almost every computer system to initialize the
system and load the preliminary programs to handle the
terminal, possibly a cassette tape interface, floppy disc
drive, and a printer. Inclusion of a board that can hold
the ROMs and possibly a small amount of RAM is es-
sential for any system. For instance, the PROM/RAM
board made by Vector Graphic can hold 4096 words
of permanent storage in the form of 1702A ultraviolet-
erasable programmable read-only memories and an-
other 1024 words of static RAM in the form of 2102
RAMs (Fig. 5.7). Other boards, made by MITS, Solid
State Music, Seals Electronics, and Pertec offer up to
16 kwords of PROM but no RAM (Fig. 5.8).

There are even combination boards that can take
the place of the front-panel switches, load programs into
RAM, and even contain some of the input and output
interface circuitry to handle the peripheral equipment.
One such example is the System Monitor Board made
by Xitan (TDL) (Fig. 5.9).

(A)

(B)

-® I '. •-
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(C)

Fig. 5.6 Some typical larger memory cards: (a) Pertec
88-16 MCD, (b) Xitan/Technical Design Labs Z16, and
(c) Seals Electronics 16k. (Courtesy Pertec, Xitan/
Technical Design Labs, and Seals Electronics)

ROMs : ICs That Remember

The read-only memory, as mentioned at the begin-
ning of this chapter, is a form of random-access mem-
ory. However, data stored within the circuit can be
looked at (read out) but not altered. There are several
methods available to put data into a read-only mem-
ory. Manufacturers that use thousands of the same
product will usually tell the IC supplier exactly what
to put inside the circuit and will obtain a very low-cost
part. However, if the manufacturer makes a mistake

45

he'll be stuck with literally thousands of useless
memories.

To avoid this problem of ordering a large number
of parts before the program or data stored in the ROM
are tested, IC suppliers developed several types of mem-
ories that the manufacturer (you) can program and then
test in the computer or other circuit. The two major
types of programmable read-only memories (PROM)
are the bipolar fusible link PROM and the ultraviolet
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Fig. 5.7 The PROM/RAM board made by Vector Graphic Corp. holds up to 2048 bytes of PROM/EPROM/ROM and an additional 1024
bytes of RAM.

(A)

(B)
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Fig.5.8 Various PROM boards: (a) from SSM (Solid State Music), (b) Pertec, and (c) Seals Electronics. (Courtesy SSM, Pertec, and
Seals Electronics)
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Fig. 5.9 The System Monitor Board (left) designed by
Xitan/Technical Design Labs not only holds the ROM
and RAM, but also contains serial and parallel inter-
faces for peripheral equipment.

Fig. 5.10 Able to store data permanently, the 3604
(a) is an electrically programmable ROM that holds
up to 4096 bits and is organized as a 512 x 8-bit
memory array. The other circuit is a 2708 ultraviolet-
erasable, electrically programmable ROM (b). It can
hold up to 8192 bits of data and is organized as a
1024 x 8-bit array. (Courtesy Intel Corp.)

(A)
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(B)

Fig. 5.10 (cont 'd) Able to store data permanently, the 3604 (a) is an electrically programmable ROM that holds up to 4096 bits and is
organized as a 512 x 8-bit memory array. The other circuit is a 2708 ultraviolet-erasable, electrically programmable ROM (b). It can hold
up to 8192 bits of data and is organized as a 1024 x 8-bit array. (Courtesy Intel Corp.)

Fig. 5.11 A close-up shot of good and blown fuses
in a bipolar PROM. (Courtesy Intel Corp.)

UV EPROMs are available in array sizes from 256 X 8
to 4k X 8 bits on a single chip.

Fusible-link PROMs access about 10 times faster
than the UV EPROMs; their access times are typically
50 to 100 ns minimum compared with 350 ns to 1µs for
the UV EPROMs. The difference in speed is mainly due
to the basic process differences; most fusible-link
PROMs are made with bipolar transistors while the
UV EPROMs are made from MOSFET transistors.
However, even though the bipolar PROMs are faster,
they have some disadvantages versus the MOS UV
EPROMs. Once the bipolar PROMs are programmed,
information stored in the circuit cannot be altered since
the programming process burns away some of the ac-
tual circuitry inside the PROM. The UV PROMs, on
the other hand, can be wiped clean by shining a high-
intensity ultraviolet light for about 10 minutes through
a transparent lid on the top of the case. After the

erasable PROM (Fig. 5.10). Fusible link PROMs are EPROM is erased new information can be stored in-
available in array sizes as small as 256 X 4 and as large side until the new information is no longer needed; this
as 2k X 8, and even larger sizes are in the works. The process can be repeated a great many times.
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The most commonly available type of bipolar
PROM uses metal links to make or break a connec-
tion between transistors within the chip (Fig. 5.11).
In a 4096 bit PROM there are 4096 links, one for each
bit. Each metal link is often referred to as a fuse and
during the programming process the link is either blown
apart or left intact to indicate the value stored in the
cell. Each manufacturer's family of bipolar PROMs
has its own special procedure to burn the links and be

programmed.
In MOS UV EPROMs, the memory cell consists of

a MOSFET transistor whose gate is isolated from the
source and drain by a layer of silicon dioxide, a good
insulator (Fig. 5.12). During programming, a large
charge is placed on the gate, via a technique referred to
as avalanche injection, to represent a bit value. The
ultraviolet light during erasure causes a photocurrent
(light-dependent current) to flow between the gate and
the base silicon of the chip, thus neutralizing the charge
stored and wiping clean the memory. Programming pro-
cedures for a UV EPROM are vastly different from
those for a bipolar device and thus you must really make
a choice as to which type of PROM will be used early in
your selection.

MOS PROMs, although slow, offer more advan-
tages than disadvantages, especially since they're reuse-
able if the information stored within them becomes
obsolete. There are four commonly used UV EPROMs:
the 1702A, the 2704, the 2708, and the 2716 now avail-
able at a cost of about $3, $10, $15, and $35, respectively,
from various surplus dealers. These PROMs hold 256,
512, 1024, and 2048 8-bit words, respectively. The 1702A
pinout differs considerably from those of the 2704, 08,
and 16 EPROMs (Fig. 5.13). The 2704, 2708, and 2716
can almost fit in the same socket; only one wire has to
be changed to use a 2708 in a 2704 socket and similarly
for the 2716. Voltage requirements for the 1702A are +5
V and -9 V for operation after programming; the 2704
and 2708 require + 12 V and +5 V supplies, while most of
the 2716s require just a 5 V supply. To store the charges
inside the PROMs, a programming time of 120 seconds
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Fig. 5.12 Close-up microphotograph of individual
memory cells in a 2708 EPROM. (Courtesy Intel Corp.)
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is required for the 1702A and slightly less for the newer
2704, 2708, and 2716 PROMs even though they hold
many times the number of bits. That is, if you have a
computerized programmer.

The PROMs Are Programmed like This ...

In the 1702A PROM, all 2048 bits are initially
(or after erasing) in the ZERO output state; informa-
tion is introduced by selectively programming ones into
the desired bit locations. To program the 1702A, the
complement of the address of the word to be programmed
is first placed on the PROM's address bus, and while
the bit levels are held constant the Vdd and V,, power
lines to the chip must be brought to their negative lev-
els (Fig. 5.14). The address bits must be held in their
complement state for a minimum of 25µs before a nega-
tive program pulse is applied to the program input pin.
All addresses should be programmed in sequence from
0 to 255, for a minimum of 32 times to ensure valid in-
formation. The eight data outputs DO to D7 are used as
the information inputs for each word. A negative level
on the data lines will cause a one to be programmed
and a ground level will cause a zero. All eight bits of
each word are programmed simultaneously. During pro-
gramming, VV and Vdd and the program pulse are pulsed
signals, V., must be kept at ground, Vbb must be biased
at 12 V, and CS must be kept at ground.

The 2704, 2708, and 2716 have similar program-
ming characteristics and initially (or after erasure) come
with all bits in the ONE output state. Information is
stored by selectively programming zeros into the de-
sired locations. The PROMs are set up for program-
ming by first raising the CS/ WE input pin to 12 V (Fig.
5.15). The word address is selected in the same way as
in the READ mode (the binary address is presented to
the address inputs) and then data to be programmed
are placed on the 8-bit data outputs of the PROM. Volt-
age levels on the address and data lines are standard
TTL levels: 0.65 V for a zero and 3 V for a one. After
the address and data are present a 10-µs set-up period
must be included and then a positive program pulse of
about 25 to 27 V should be applied to the program in-
put line. Again, all addresses should be programmed
in sequence (0 to 511 or 0 to 1023) and one pass through
all addresses is called a programming loop. The num-
ber of loops N required to guarantee programming is
a function of the programming pulse width tp. such
N X tpw >, 100 ms. However, you are somewhat restricted
in that the pulse width must be in the range of 0.1 to 1
ms, therefore N can range from 100 to 1000. There must
be N successive loops through all 512 or 1024 addresses
to guarantee programming. N pulses should not be ap-
plied to one address before the next address is accessed.
At the end of the N-loop sequence the CS/ WE falling-
edge transition must occur before the first address tran-
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Fig.5.13 Pinouts and block diagrams for the (a) 1702A, (b) 2704/2708, and (c) ?716 UV EPROMs. (Courtesy Intel Corp.)

sition when changing from a PROGRAM to a READ
cycle. The program pins should also be pulled to ground
by an active rather than a passive load.

The actual circuitry necessary to program the UV
EPROMs is not overly complex and can be built into a
small, separate cabinet or on a card that plugs into the
computer. Many companies offer stand-alone program-
mers and programming cards that fit right in the S-100

The S-100 Bus Handbook

AO

Al

A2

A3

_ CHIP
CS/WE - SELECT

LOGIC

bus. However, if you're not doing your own program-
ming this accessory may not be needed. System and
end use needs will be the determining factors.

Design the Board That Remembers

Most of the ROM/PROM memory boards from
various companies are designed to use the 1702A PROM
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Fig. 5.13 (cont'd) Pinouts and block diagrams for the (a) 1702A, (b) 2704/2708, and (c) 2716 UV EPROMs. (Courtesy Intel Corp.)
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waveforms for the 1702A UV EPROM. (Courtesy Intel Corp.)

because it is very inexpensive compared to the larger
UV EPROMs such as the 2708 or 2716. However, the
2708 prices have recently dropped to below $15 and can
hold the equivalent of four 1702A PROMS. Since the
MOS PROMS are slow-the access time is about double
that of the RAMs, typically 500 ns-the processor may
have to be told by the memory that it has to wait until
the memory has accessed the information. This is called

inserting a WAIT state (WAIT cycle).

One of the simpler cards is the 88-PMC PROM
memory card from Pertec. The board can hold eight
1702A PROMs and even has a provision to put into
standby all PROMS not in use. Special circuitry on
the board can also be set to insert 0, 1, 2, or 3 WAIT
states so that different speed memories can be used.
Most of the circuits are normal 7400 or 74LS series
except for three, which are special circuits immune
to high levels of noise, and the memories. Any PROM
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Fig. 5.15 Programming waveforms for the 2708 UV EPROM. (Courtesy Intel Corp.)
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Fig. 5.16 Block diagram of the 88-PMC card made by
Pertec.

board is divided into several sections that support
the PROMS: the address decoding circuits, the V,
switching circuit, and the wait circuitry (Fig. 5.16).

The interface of the PROM card to the S-100 bus
is very simple. There are the 16 address inputs and
eight data outputs for starters, the power supply inputs,
and eight control lines. The eight control lines are
PHASE 1 and PHASE 2 CLOCK, MEMORY READ,

POWER, CLEAR, PRESET, SYNC, READY, and the
PROTECT STATUS indicator line.

There are , of course, many different memory cards
available from over 40 manufacturers . When you put
together a system you should make sure all memory
boards have an access time faster than the microproc-
essor cycle time, or that all the boards have provisions
for inserting WAIT states. If you really have to pack the
most into the least space, several companies offer many
high-density memory cards.

For example, several companies offer 64 kbyte RAM
boards that provide the entire addressable memory
capacity of the computer on a single board . The boards
use many of the same pins as the Pertec 4k board-the
PHASE 1 and PHASE 2 CLOCK lines, the STATUS
OUTPUT line, the SYNC line, the MEMORY WRITE
line, the MEMORY READ line, the MI STATUS
line, the STATUS SHORT line, the POWER ON
CLEAR line, the POWER ON INDICATOR line, the
EXTERNAL READY line , and the DATA BUS INPUT
line. And these boards are designed so that when used in
an Altair or Imsai computer , they appear like a static
memory even though they use dynamic RAMS as the
storage elements. Special provisions on some of the
boards permit them to be used in applications where up
to 16 banks of 64 kbytes can be plugged into the computer
and controlled by the processor via a special bank-
switching program . Some boards use S-100 bus pins 56
and 66 and 13 to 17 for bank 0 to 15 select signals. These
pins on the Imsai computer are undefined. However, on
the Pertec 8800b computer pins 13 and 56 to 58 have pre-
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defined functions, and thus bank positions 0, 1, 2, and 11
can't be used unless those pins are redefined.

However, few systems can run with just banks of
RAM. For large ROM-based programs, Seals Elec-
tronics offers a 16-kbyte PROM board that holds up
to eight 2716 PROMs. Other companies also offer high-
density PROM boards. For instance, Vector Graphic
offers a board that holds 12 kbytes of 2708 PROMs
and an additional 1 kbyte of RAM, thus permitting
minimal memory systems to be built on a single card.
A selection of detailed memory board schematics is
included in Appendix C.

Using the various types of memory boards in a
computer system is very simple. In most cases the
boards just have to be set for the address space they are
intended to occupy. For example, most 8k memory
boards have three switches that are used to specify any
one of eight possible memory blocks 0000 to 1FFF,
2000 to 3FFF, 4000 to 5FFF, 6000 to 7FFF, 8000 to
9FFF, A000 to BFFF, 0000 to DFFF, and E000 to
FFFF. Larger memory arrays such as a 16-kbyte array,
and a 32-kbyte array require only two or one switches,

respectively, to perform array locating. Full 64k RAM
arrays require no switches.

Once the block address on the memory board is
set, all that has to be done is to plug in the board and
turn on the system. Assuming the board has no defec-
tive memory chips, the system should be fully opera-
tional. Software techniques for tracing a defective
memory chip will be discussed later.

One other aspect of memory system set up is the
split in the memory space between RAM and ROM.
Many programs are organized so that they must be
loaded into RAM starting at address 0000. However,
there are just as many programs that are designed to
run on the computer with RAM space in the last few
thousand bytes of their address range. So, the program
you run on the computer has a lot to do with the way
the address space is set up. And the program may also
determine the amount of RAM or ROM space the com-
puter must contain. Some programs will operate quite
nicely with only 8 kbytes of RAM, while others, such
as the Extended Disk BASIC offered by Pertec, require
24 kbytes just for the program.



CHAPTER 6

Input/Output Interfaces for
the 5-100 Bus

The basic S-100 computer system described in
Chapters 4 and 5 consists of a system cabinet with a
multiple-slot motherboard , a control front panel, a
central processor card , and some assortment of memory
cards. The next basic section of the computer is the
input-output portion of the overall system. Computers
are not stand-alone machines-data are fed in from one
source , manipulated , and then fed out to another place.
Devices that feed information to or accept information
from a computer are referred to as computer peripherals.

Two of the most commonly used input / output (I / O)
devices are the CRT terminal and some form of printing
device ( Fig. 6 .1). The CRT (cathode-ray tube) terminal
is a television - like device that has a typewriter-like
keyboard . When information is typed on the keyboard
it appears on the screen and is sent to the computer.
The computer can, in turn , send information back to
the terminal so it appears on the screen . A printing
device often combines a keyboard with some sort of
printing mechanism to permit the operator to enter
information and yet have a permanent record of every-
thing entered . The printer can also be a receive-only
device and only print information transmitted to it by
the computer.

However , no matter what the peripheral device
used , there are only two basic ways that data can be
transferred back and forth between the peripheral and
the computer . The simplest method uses aserial interface.
This technique , in its minimal form , uses only three
wires to connect the peripheral to the computer one
wire is for data transmitted by the peripheral to the
computer , another is for data received by the peripheral,
and the third line is a ground connection . Information
sent back and forth is usually coded into a special
format known as ASCII (the American Standard Code
for Information Interchange ), which is a code that
requires eight bits to represent any of the 128 characters
plus other information . To transmit the information
representing each character over a single wire , special
circuits must be used to convert the eight parallel bits
into a serial stream of eight bits , and vice versa. These
circuits operate at various speeds and in several different

modes. There are two basic operating modes-synchro-
nous and asynchronous. The synchronous mode re-
quires that information be transmitted at a specific time
along with special timing pulses that are received so that
data can be sent at rates of 56,000 bits per second and
higher. However, for data to be sent synchronously both
the transmitting and receiving units must "lock" their
timing signals together.

Asynchronous systems, on the other hand, do not
require both systems to lock into each other. Instead,
each time data are to be sent, the unit sending data inter-
rupts the other unit and sends the information. To make
sure data are received properly, special timing signals
called start and stop bits are added to each character.
Additionally, a signal such as a parity bit can sometimes
be added (a parity bit indicates whether the sum of all
one bits in the character is odd or even) as an extra
safety measure to prevent errors. Typical communica-
tion rates during asynchronous operation are 110, 300,
1200, and 9600 bits per second (commonly referred to
as baud rates) although many other rates from 75 to
19,200 are also used by various manufacturers. The
lower the number, of course, the longer it takes to trans-
mit or receive data.

The other method of transmitting data back and
forth is via a parallel interface. This method uses at
least eight wires for the byte to be transferred and often
two or more control lines to signal the computer or
peripheral that data are ready to be sent or have been
received. Since eight bits are transmitted at one time,
and often in a synchronous manner, parallel informa-
tion transfers are high-speed operations with rates of
I million bits/ second possible.

Often, data are transmitted in a parallel ASCII
format, but not always. Other than ASCII, there are
really no standardized parallel formats. However, serial
data do have some standardized transmission formats,
including timing as well as signal levels and length of
data. One of the most common asynchronous serial
formats was developed for use in low-speed communi-
cations equipment and it consists of a start bit, five to
eight data bits, one or two stop bits, and an even, odd,
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(A)

(B)

or no parity bit. Synchronous formats don't require all
the extra bits since the equipment is waiting for simpli-
fied data.

In addition to the formatted bit pattern, there are
three specific voltage requirements for the serial inter-
face, depending on the type of equipment connected to
the computer. The three interfaces include the TTY

(C)

Fig. 6.1 The CRT terminal (a) and the teletypewriter
(b) are the two most commonly used forms of input
and output devices used with computers. The CRT
terminal permits data to be entered or output without
wasted paper. However, to obtain a permanent record
of the computer's output, a hard copy device such as a
printer (c) must be used. (Courtesy Southwest Tech-
nical Products, Teletype Corp., and Texas Instruments)
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(teletypewriter) 20 mA current loop, the RS-232-C, and a
TTL equivalent of the RS-232-C. For a current-loop,
interface, an approximate 20 mA current flow indicates
a logic 1 while the absence of a current in the loop indi-
cates a logic 0. An RS-232-C interface allows for a -5
to -15 V level to represent a logic 1 and a +5 to +15 V
level for a logic 0, although ± 12 V levels are commonly
used. The TTL RS-232-C equivalent uses standard TTL
voltage levels to represent the I and 0 values.

The heart of any serial interface is the circuit that
will do the parallel-to-serial or serial-to-parallel con-
version. This circuit can perform the operation syn-
chronously, asynchronously, or both ways. If it performs
only synchronous operations it is often referred to as a
USRT (universal synchronous receiver/transmitter). If it
performs only asynchronous operations it is referred to as
a UART (universal asynchronous receiver/transmitter).
And if it performs both it is a USART (universal syn-
chronous /asynchronous receiver/transmitter). These
circuits, almost as complex as the microprocessor they
interface to, can accept parallel data words on one set
of inputs and deliver a serial pulse train on another
output. The other half of the circuit accepts a serial pulse
train, removes the start, stop, and parity bits, and de-
livers a parallel data word.

Most UARTs, USARTs and USRTs can also detect
some error conditions-they can detect a missing stop
bit (usually called a framing error FE), an error in
parity (referred to as a parity error PE), or a mismatch
of data transmission speeds (called an overrun error
OE). When any of these error conditions is detected
by the circuit, one of the three error output lines can
be used to trigger external logic for an indication to the
user. However, the UART, USART, or USRT doesn't
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do the job all by itself. It does connect to the computer
bus along with appropriate buffers and timing circuits
to generate the proper communication rates.

One commonly used circuit is the 8251 USART
made by Intel Corp. It is designed to be controlled by
the microprocessor and operate with almost any serial
data-transmission technique. Housed in a 28-pin DIP,
the 8251 requires just a 5-V power supply and a single-
phase clock signal (the phase 2 of the computer clock
works nicely). Data rates of up to 9600 baud can be
handled by the 8251 in its asynchronous mode and up
to 56,000 bits/second in the synchronous mode. Most
circuit boards that mate to the S-100 bus can hold
enough circuitry for at least two complete serial inter-
faces along with jumper selectable options for the type
of serial voltage levels RS-232-C, TTL, TTY, etc.
Jumper wires or switches on the board are often used
to hardwire the type of output used. Each input or out-
put to or from the computer provides the computer with
a means of communicating with the outside world-these
"doorways" or "portals" are referred to as ports. There-
fore, a card with two serial interfaces is said to provide
two serial 1/0 ports.

The 8080A microprocessor can directly communi-
cate with up to 256 ports, although it's rare to find a
case where more than one tenth that number are being
used. Basically, the operation of the 8080A's I/O struc-
ture can best be considered an array of memory loca-
tions that can be read from or written to. Special instruc-
tions provided in the 8080A are just intended to transfer
information from the processor to the interface, and
have no effect on the memory space. This technique
is often referred to as isolated 1/0.

Another popular technique to handle 1/0 ports is to
use the memory locations in what is called memory-
mapped I/O. This method permits the CPU to manipu-
late the I/O port with the same instructions it uses
to manipulate the data held in a memory location. How-
ever, to do this you have to use part of the address space
of the memory-usually half of it if you want a simple
control circuit. The control signals necessary to provide
memory-mapped I/O are generated from the MEMR
and MEMW signals and the highest-order address bit
A15 (Fig. 6.2). When addresses of less than 32k are
being addressed the A 15 line is LOW and both gate out-
puts are HIGH, indicating that the memory is in use.
However when A15 goes HIGH the condition of either
MEMR or MEMW lines determines whether the output
port is in an input or output mode. I/O devices are still
considered addressed as ports, but instead of the accu-
mulator in the microprocessor as the only transfer
medium, any of the internal registers can be used. And
all instructions that could be used to operate on mem-
ory locations can now be used in I/O operations.

With both systems of I/O, the addressing of each
device can be configured to optimize efficiency and
reduce component count. If the non-memory-mapped

ISOLATED I/O
0-_-____ ----- 6K

MFMORY

256

I/O

I I

----------
0 32K 65K

MEMORY I/O

MEMORY MAPPED 1/O

A15

Fig. 6.2 Comparison of memory-mapped vs . isolated
I/O circuit techniques.

I/O is used, the port address is delivered to the rest of
the system by using the eight high-order address bits
on the second machine cycle of the input or output
instruction. The address code for the desired port is set
up on the bus by the CPU and is decoded by the partic-
ular card it is intended for. Let's take a look at what
one manufacturer has done to make a dual serial input
card for an 8080A- or Z-80-based computer.

The SIO card developed by Imsai provides two
serial data ports that can accept either the 20-mA
current-loop inputs from a teletypewriter or the TTL
level signals from a CRT terminal. Operation of the
board requires 16 I/O port address locations, which are
selected by address bits 0 to 3. When the board is used
with input and output instructions, address bits 4 to 7
form the remainder of the board address and are jumper
selectable. The upper byte of the board address is fixed
at FE 16, thus permitting all the lower eight bits to be
used for port addressing-from 0 to 255. A total of
16 port addresses are available to the board so that up
to 16 boards can be installed in a system. And, to permit
the computer to control the boards, the lower four bits
of the address are used to control: the direction of data
flow, A3; channel B on or off, A2; channel A on or off,
Al; and the command/data line on the 8251, A0.
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Fig.6.3 Block diagram and pinout of the 8251 universal synchronous/asynchronous receiver/transmitter (USART) used to form the
programmable serial interface on the Imsai dual-channel serial I /O board. (Courtesy Intel Corp.)

The USARTs permit extensive program control of
the input and output functions including RS-232 control
line and SYNC character selection in the synchronous
mode and error condition sensing and recovery capa-
bility . The board generates an interrupt (a signal to the
CPU to stop what its doing and go to a different pro-
gram ) for received characters , empty transmitter buf-
fers , and SYNC characters detected . Provisions are
available for jumper selecting the priority of the inter-
rupt, which works in conjunction with another board
that can be plugged into the card cage (a priority inter-
rupt controller).

Study the 8251 Before Using Board

Inside the 8251 USART are seven function subsys-
tems (as shown in Fig. 6.3) that manipulate and control
the data flow into or out of the computer. Three of the
blocks are buffers but each does a different job. The
data bus buffer is a three-state bidirectional buffer
that interfaces the 8-bit data bus to all the subsystems
in the 8251. The transmit buffer accepts the parallel
data or control words coming in from the data bus
buffer and, under control of another block, the transmit
control, converts the parallel data to serial, sticking
in the necessary control bits and parity signals when
necessary. Doing the opposite job is the receive buffer,
a circuit that accepts a serial data signal and removes
the extra control bits under control of the receive con-
trol circuits and converts the serial word back to a
parallel data format. Eight of the circuit's 28 pins are
used for the data bus buffer and one each for the trans-
mit and receive buffers.

Each of the transmit and receive control blocks
requires three lines, a TxRDY signal output to indicate
that the USART is ready to accept a character from the
data buffer, a TxE output line to indicate that the
buffer inside the USART is empty and another charac-
ter can be sent, and a TxC input to accept the clock
signal from the system to output data at the desired bit
rate. Similarly, the receive control section has three
lines--an RxRDY output line to indicate that the re-
ceive buffer has a character ready to be shifted into
the data bus buffer section, an RxC input line to accept
the system clock so that data can be received at the
proper rate, and a SYNDET line that is used only in
the synchronous operating mode as an input or output
to aid in the reception of synchronous data streams.

All the other control lines of the 8251 connect to
the modem control block (a modem is a device that can
accept serial digital data and convert the data into sound
so that transmission over a telephone line is possible).
The modem control block has four lines-two that act
as input control and two that act as output control. The
DSR input signal is an input sent to the 8251 by the
CPU and it is used to make sure the data set (the modem
itself) is ready to accept data for transmission. In return,
the 8251 has a DTR line that can be used to answer back
and indicate that the modem is ready for transmission.
A CTS signal sent by the computer enables the modem
control circuit and permits the modem to transmit data
if the TxEN bit in the control byte originally was set
HIGH.

As part of the read/write control logic there are
three basic functions present that are common to almost
every other logic circuit used in a computer -a RESET
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Fig.6.4 The SIO 2-2 board made by Imsai provides
two independent serial I/O channels. (Photo by J.
Bierman)

line to put the 8251 into an IDLE mode until it receives
a new control byte, a CLK line that accepts the system
clock (phase 2) and generates all the 825l's internal
timing (the clock must be at least 30 times to receive
or transmit clocks during synchronous operation and
4.5 times for asynchronous operation), and a CS signal
to enable or disable the 8251-no reading or writing
will occur when the 8251 is disabled. The other three
control signals on the USART include the C/ D line,
which in conjunction with the WR and RD lines informs
the 8251 that the word on the data bus is either a data
character, control word, or status information; the WR
line is used to tell the 8251 that the CPU is sending
information to the USART for transmission; the RD
line indicates that the CPU is waiting for information
currently being transmitted by the 8251.

The basic interface circuit then, requires that the
8251 be connected to the data bus and that the address
bus control its operation by enabling it at the right time.

On the SIO-2-2 board developed by Imsai (Fig. 6.4),
there are two mirror-image sections controlled by some
address decoding and buffering circuits (Fig. 6.5). Oper-
ation of the board starts with setting up an address to
enable the desired circuits. There are over half a dozen

DATA BUS

CLOCK INPUT

ADDRESS
DECODE
LOGIC

8251
USART

BAUD RATE
GENERATOR

CONTROL AND TIMING LINES
FROM S-100 BUS

I/O
INTERFACE
LEVEL
SHIFTERS

25 PIN I/O CONNECTOR

I/O
INTERFACE
LEVEL
SHIFTERS

25 PIN I/O CONNECTOR

Fig. 6.5 Block diagram of the Imsai SIO 2-2 serial
I/O board.

jumper sockets that can be used to not only set up the
address, but control the baud rate, select the correct
port, and interrupt the processor when a signal is com-
ing in.

Address bits 1 and 2 select which port is being used,
with address bit 1 controlling port A and bit 2 control-
ling port B. Address bit A0 determines whether the 8251
is in the CONTROL or DATA mode. The READ and
WRITE strobe signal completes the control sequence
and enables the 8251s to read or write data onto the
data bus. Each 8251 has four control lines that are used
for interrupting the processor. When interrupts aren't
needed, the signals can be disabled by two of the output
port bits (signals IEA or IEB).

To determine the proper communication rate, the
2 MHz phase-2 clock is divided to provide standard
baud rates for jumper selection to ports A and B. Baud
rates of 9600, 4800, 2400, 1200, 600, 300, and 150 are
available. The 110 baud rate is derived by dividing the
2400 baud signal by 11 and then by 2.

Both data and control outputs of the USARTs are
received or transmitted via TTL to RS-232 level con-
verters. TTL data and control levels are also fed to
the output port through open-collector driver circuits.
Special current-loop input and output circuits for use
with teletypewriters are also on the board. These circuits
use optical isolators (LED/phototransistor pairs) to iso-
late the rest of the board circuitry from damaging volt-
age levels or signal noise generated by electromechanical
terminal circuits. Current loops of either 20 mA or 60 mA
can be handled.

To initialize the circuits so that a peripheral can be
interfaced, line A0 must first be examined since it deter-
mines whether the 8251 responds to the current byte as a
control or data byte. when A0 is HIGH the 8251 re-
sponds to the byte as a control byte, and when LOW as a
data byte. Thus, to write a control byte into USART A,
the lower four bits of the address would normally con-
tain hex 3 or octal 3 while the normal address for chan-
nel B control bytes would be hex 5 or octal 5. Address
bit 3 (A3) selects the board control I/O port-when
HIGH the port is enabled. Thus, when the port is in use
the lower four bits of the address would be hex 8 or
octal 10.

Get the Board Up and Running

The control byte is actually divided into two 4-bit
control words-the upper half of the byte serves channel
B and the lower half serves channel A. These bits control
the INTERRUPT ENABLE separately for each chan-
nel. When bits 0 and 4 are HIGH, the interrupts are
enabled and the processor will receive data and inter-
rupt its processing whenever any of the four USART
control lines is active: TxRDY, TxE, RxRDY, SYDET.
If bits 0 or 4 on each channel are LOW, no interrupts
can be generated for the appropriate channel. Data
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Fig. 6.6 Typical jumper interconnects to set up the Imsai board for a simple serial interface on one of the two channels.

bus lines 1 and 5 are used for channels A and B, respec-
tively, to signify the CARRIER DETECT signal. These
lines are active only when a jumper in board socket BJ
has selected the board to act as the originator of the
CARRIER DETECT signal. (All jumper arrangements
are shown in Fig. 6.6.)

Bits 2, 3, 6, and 7 are not used in the OUTPUT mode
but are used in the INPUT mode. Similarly, bits 0, 1, 4,
and 5 are not used in the INPUT mode but are used in the
OUTPUT mode. Lines for bits 2 and 6 read the condi-
tion of the CARRIER-DETECT RECEIVE for chan-
nels A and B, respectively. This line is only activated
when jumpered at socket location BJ so it will read the
condition of the CARRIER-DETECT line. Bits 3 and 7
serve channels A and B, respectively, to read the con-
dition of the CTS control signal since the 8251s cannot
do that directly through their programmed input.

All the output interface circuits are specialized
devices for a particular application. For instance, TTL
output levels are available from a 75452 dual peripheral
driver that has open-collector outputs pulled up to 5 V
with 226 fl resistors. TTL input lines can accept a
1-TTL-normalized load and have a 1 kfl pull-up resis-
tor to +5 V. Thus, when they're not used, the inputs are
held HIGH and minimize overall power drain.

If the current loop inputs are used, the TTL data
input line must be left open and not held HIGH. The cur-
rent loop input uses optoisolators and can respond to
either 20 or 60 mA. A separate transistor is used to
switch the current loop through the isolator and it is
provided with a transient shunting diode so that it can
be used to drive relays without risking damage to the
output circuit.

Setting the baud rate for each channel is just a
matter of using a few jumpers in socket RJ. Table 6.1

shows the rates and jumper requirements when the 8251
is programmed for a X 16 asynchronous clock rate
and a X 1 synchronous clock.

Other jumper areas on the circuit board are used
to handle the RS-232 and CARRIER-DETECT func-
tions. Jumper areas CJ -A and CJ-B are used to permit
the serial RS-232 ports on channels A and B , respec-
tively, to be wired so that the port can serve as either
the terminal end or the computer end of the RS-232 line.
This eliminates any special wiring. Each jumper area is
actually a 16-pin DIP socket . If, for instance , the board
is to serve as the computer end of the RS-232 line, the
jumpers must be set as shown in Fig . 6.7. Thus the
TRANSMIT DATA circuit is now driving what is re-
ceived data for the terminal , and the RECEIVE DATA
circuit is receiving what is transmitted data from the ter-
minal. Similarly , REQUEST-TO-SEND and CLEAR-
TO-SEND lines are reversed and so are the DATA-
SET-READY and DATA-TERMINAL-READY lines.
Also available on the jumper socket are ground and
+5 V tie points to provide permanent mark or space
levels to any of the control lines if the CLEAR-TO-

Table 6 .1 Baud Rates and Jumper Requirements for the 8251
USART

Socket Pin 1 9600 Asyn

2 4800 A

3 2400A (38,400 sync)
4 1200A (19,200 sync)
5 600A (9600 sync)
6 300A (4800 sync)
7 150A (2400 sync)
8 110A

14 75A (1200 sync)

Connect any of the above to socket pins 11 or 12 for sections B and
A, respectively.
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Fig. 6.7 Jumper arrangements on one channel for a
complete RS-232 board interface. Jumper connection
3 to 14 must always be made.

SEND is not driven by an external source. If a constant
enable signal is needed for the transmitter section of
the USART the +5 V signal should be jumpered to pin 6.

Jumper socket BJ is used to set whether the
CARRIER-DETECT signal is being originated or
received by the SIO board. It is also used to jumper
the control lines between channel A and channel B for
applications where the control lines are bypassed and
data are intercepted and handled. The four primary con-
trol lines for both channel A and channel B appear in this
jumper socket, and can be connected as desired.

Remember, only one source should drive an RS-232
line at a time. If the control lines are jumpered so
that the modem and data terminal are driving the lines,
then appropriate jumpers in the CJ sockets should be
removed so that the SIO circuits will not try to drive
the control lines at the same time. However, if a signal
on the DATA-TERMINAL-READY line must be
detected, then a jumper must be connected in the BJ
socket between pins 5 and 6 for channel A or between
pins 11 and 12 for channel B. And, if the board must
originate the CARRIER-DETECT line, jumpers should
be placed between pins 5 and 7 for channel A and 10
and 12 for channel B, instead. Both ground and +5 V
are also available in the BJ socket to provide a perma-
nent mark or space level to any of the control lines.

The interrupt lines from channels A and B are both
available on the interrupt select socket. All eight of
the possible priority interrupt lines that are allotted
on the main computer bus are also wired to the jumper
socket. A jumper can then be placed between the appro-
priate channel's interrupt line and any one of the prior-
ity interrupt system lines to provide an interrupt of
the desired priority.

For synchronous operation, jumper socket DJ pro-
vides facilities for originating and receiving clock
signals used for receive and transmit. One half of the
socket controls lines for channel A and the other half
handles channel B. Pins 1, 2, 3, 4, 13, 14, 15, and 16
serve channel A and pins 5, 6, 7, 8, 9, 10, 11, and 12 are
for channel B. When the SIO is used to originate the

CLOCK signal, the pins for that channel should be
jumpered straight across so that the CLOCK signal from
the SIO board is fed into RS-232 drivers and onto the
DD and DB lines. The inputs to the data-clock-receive
circuits are tied to -12 V to provide an interactive out-
put to the OR gate that supplies the receive CLOCK to
the USART. If, instead, the SIO board must receive the
CLOCK from the RS-232 lines, DD and DB must be
jumpered to the input of the clock receive circuits.
When this is done, the data-rate-select socket for the
appropriate channel is held at ground, or LOW, to
avoid interference between the on-board CLOCK cir-
cuit and the incoming CLOCK from the RS-232 lines.

The data-rate-select socket lets you set up different
baud rates for both channels A and B from the standard
rates provided by the SIO board circuits. Clock lines
for channels A and B are completely independent and
may be jumpered to the same or different rates. When
the 8251 is used in a synchronous mode, the WAIT
uses a X1 clock rate rather than the X16 rate used in the
asynchronous mode. Thus, depending on the mode, the
clock rates will be different by a factor of 16.

Two more jumper sockets are used to select the
board address and one of the two possible modes. As
mentioned earlier, the board can respond to both I/O
instructions or memory-access instructions. For the
board to respond to I/O commands, the port select 0
socket must be set up so that pins 8 and 9 are connected
and pins 5 and 12 are jumpered. Then, the port select 1
socket must be jumpered so when the desired I/O port
address appears on the address lines, the inputs to the
NAND gate from bits A4 to A7 are HIGH. If, for
instance, address bit 5 should be 0 for the board to
respond, pins 4 and 13 should be jumpered while pins 3
and 14 should be left open. On the other hand, if bit 6
should be 1, pins 3 and 14 or 3 and 13 should be jump-

Fig.6.8 The Pertec 88-2SIO serial interface board.
(Courtesy Pertec)
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TRANSMIT 4
CLOCK

ENABLE 14

READ /WRITE 13-

CHIP SELECT 0 8-

CHIP SELECT I 10-

CHIP SELECT 2
REGISTER
SELECT

9 -►

II-

DO 22^

DI 21 -

D2 20.-..

D3 19 -

D4 1B

D5 17^- -

D6 16-

D7 15

RECEIVE 3
CLOCK

}

CHIP
SELECT
AND
READ/
WRITE
CONTROL

DATA
BUS
BUFFERS

l
VDD = PIN 12

VSS = PIN I

TRANSMIT
DATA
REGISTER

STATUS
REGISTER

CONTROL
REGISTER

RECEIVE
DATA
REGISTER

CLOCK
GEN

TRANSMIT
SHIFT
REGISTER

PARITY
GEN

TRANSMIT
CONTROL

6 TRANSMIT DATA

24 CLEAR -TO-SEND

INTERRUPT 7 INTERRUPT REQUESTLOGIC

I RECEIVE PARITY
CONTROL CHECK

23 DATA CARRIER DETECT

. 5 REQUEST-TO-SEND

2 RECEIVE DATA

Fig.6.9 Block diagram of the asynchronous communications adapter used on the Pertec 88-2SIO board. (Courtesy Motorola)

ered and pin 4 should be left unconnected. However,
when jumpers are used, pins 3 and 13 should be con-
nected so the slanted jumper will stand out to indicate
a 1 and pins 4 and 13 jumpered to indicate a 0.

For the board to be used in a memory-mapped I/O
format, the I/O port select 0 jumper socket must have
jumpers set between pins 7 and 10, and 6 and 11 (the
previous jumpers are, of course, removed). The re-
maining address jumpers are inserted as described in
the previous paragraph. When the SIO is used as a
memory-mapped I/O board, all instructions that nor-
mally affect the memory will operate on the I/O ports.
For example, an INCREMENT-MEMORY command
would read the data from the addressed input port,
increment that data by one, and output it on the same
address output port.

Another Path to the Same End

The board developed by Imsai is not the only
way to accomplish the task of connecting a serial piece
of equipment to the computer. For instance, MITS
also offers a board that contains two serial ports, the
88-2SIO (Fig. 6.8). However, their board doesn't use
the 8251s; instead it uses two 6850s, an asynchronous
communications interface adapter (ACIA) designed by
Motorola (Fig. 6.9). the ACIAs contain both the con-
trol register and the status register so that most operat-
ing options can be programmed into the devices. The
only two options that must be jumper selected are the
address select and the baud-rate select. And, if neces-

sary, the baud-rate select can be altered under program
control. Unlike the board from Imsai, the 88-2SIO can
only perform asynchronous operations instead of both
asynchronous and synchronous. And, the board is only
used in the port I/O addressing mode.

With 256 addresses reserved for I/O devices, the
computer uses special IN and OUT instructions from
the CPU to distinguish the I/O addresses from normal
memory addresses. Each instruction contains two bytes
and requires three machine cycles to complete. During
machine cycles one and two (M 1, M2) bytes 1 and 2 of
the instruction are read from the memory by the CPU.
Byte 1 is the instruction code (IN = DB16, OUT = D316)
and byte 2 is the device (port) address (00 to FF16). Dur-
ing machine cycle 3 (M3) data are transferred as follows:
In the first clock period (T1) of M3, the I/O device
address (byte 2 of the instruction) is placed on the
address bus. Only eight bits are used for I/O device ad-
dresses so the address appears on both the lower lines
(AO to A7) and the upper lines (A8 to A 15). The status
signals of T2 distinguish device address operation from
memory operations. During T2, the status information
is latched and sent to the system bus. The status signal
for the IN command is SINP, and SOUT for the OUT
instruction. Except for the I/O status signal, T3 of M3
appears identical to a memory operation.

Data are strobed into the accumulator with PDBIN
for an IN operation and strobed out of the accumulator
with the PWR signal for an OUT command. The device
and interface are responsible for assuring that data
are on the bus when the CPU requires it and that the
device receives data during PWR in an OUT operation.
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AO Al Port No. Output Function Input Function

0 0 1 Control register Status register
1 0 1 Output data Input data
0 1 2 Control register Status register
1 1 2 Output data Input data

Fig.6.10 Data transfer and control/status channel
address definitions.

Address Function

68 1st port , control /status
69 1st port , data in/out
70 2nd port, control /status
71 2nd port, data in/out

Fig. 6.11 Board address selection chart.

Addresses are selected via jumpers for address
lines A2 to A7 (AO and Al are already hardwired). The
six lines provide 64 possible addresses that are selected
in increments of four. All four addresses skipped over
are used as the data transfer and control/ status channels
of port 0 and I (Fig. 6.10). Thus, the first board would
require addresses 00 to 03, the second 04 to 07, and the
last board FB to FF (all numbers in hex). However,
address FF is the front-panel sense switch and should not
be used. Address lines AO and Al cause register selec-
tion and port selection, respectively. These lines are
software controlled and select registers and ports ac-
cording to the chart in Fig. 6.10. If, for example, address
4416 is selected via jumpers as the starting point, the
four board addresses are those shown in Fig. 6.11. Next,
if an OUT, 46 instruction (D3 4616) is executed, the
contents of the accumulator would be written into the
control register of the second port on the board, which
is strapped at location 4416.

Each port can be controlled by the computer by
feeding an 8-bit control byte into the port's control
register. The byte is structured as shown in Fig. 6.12a
and the first two bits, 0 and 1, control the internal clock

7 6 5 4 3 2 1 0

In
Interrupt

Out
Interrupt

Transmission
Bits

Clock Divide
And Reset

Note: Data bit LOW = 0
Data bit HIGH = 1

(A)

Bit 1 Bit 0 Function

0 0 Clock by 1

0 1 = Clock by 16

1 0 = Clock by 64

1 1 Master reset

(B)

Desired Baud Rate Selected Baud Rate

27.5 110
37.5 150
75.0 300

450 1800

600 2400

(C)

Function
Data Bit

- No. of No. of
4 3 2 Data Bits Stop Bits Parity

0 0 0 7 2 Even

0 0 1 7 2 Odd
0 1 0 7 1 Even

0 1 1 7 1 Odd
1 0 0 8 2 None
1 0 1 8 1 None
1 1 0 8 1 Even

1 1 1 8 1 Odd

(D)

Data Bit

7 6 5 Function

X 0 0 RTS = LOW, transmitting interrupt disabled.

X 0 1 RTS = LOW, transmitting interrupt enabled.

X 1 0 RTS = HIGH, transmitting interrupt disabled.

X 1 1 RTS = HIGH, transmits a break level on the transmit

0 X X
data output , transmit interrupt disabled.

Receive interrupt disabled.

1 X X Receive interrupt enabled.

X = does not matter.

(E)

Octal Code Function

076

003

323

000

076

261

323

000

Reset port

Set up for 8 data bits, = 16 mode,
RTS = LOW, transmit and receive
interrupts enabled.

(F)

Fig. 6.12 The control byte used to set up the 6850 is
broken into many subsections (a). The first two bits
control the internal clock divide circuit (b), the fre-
quency of which can be further divided by external
circuit connections (c). The next three bits determine
word length, parity, and the number of stop bits (d),
and the other three bits control system interrupts and
I/O handshakes (e). A complete initialization for a
teletypewriter with eight data bits, two stop bits, and
no parity is shown in (f).
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divide circuit and the master reset of the 6850 according
to the chart in Fig. 6.12b. A typical sequence would
first get both bits equal to 1 and reset the ACIA, next
bits 0 and 1 are set to 1 and 0 respectively since the
normal incoming clock frequency is 16 times the baud
rate. Any of eight baud rates from 110 to 9600 can be
jumper selected, and five additional rates can be gener-
ated by dividing the selected rate by 64 (Fig. 16.12c).
Note that the selected rate is four times greater than
the desired rate since the incoming frequency is 16 times
the baud rate and is divided by 64 in the ACIA
(64 - 16 = 4).

Bits 2 to 4 of the control register determine the
word length, parity, and the number of stop bits. The
particular peripheral used determines how the control
bits are set. All eight codes are shown in Fig. 6.12d.
A typical code pattern might be 100-eight data bits,
two stop bits, and no parity. The other three bits of
the control register control system interrupts and I/O
device handshakes, as shown in Fig. 6.12e. For a port
set up at address 00, the complete initialization when a
teletypewriter is connected with eight data bits, two stop
bits, and no parity is shown in Fig. 6.12f. Both receive
and transmit interrupts are enabled.

Status Information Is Important Too

Information describing the status of the port is
also available by reading the ACIA status register.
Information stored in this register indicates the status
of the transmit data register, the receive data register,
error logic, and the peripheral/ modem status inputs of
the port. There are eight bits used to indicate different
signals for each line.

Bit 0, RECEIVE DATA REGISTER FULL
(RDRF): This bit indicates when the received data have
been transferred to the received data register. RDRF
is cleared after the register has been read or given a
MASTER RESET signal. The cleared, or empty state,
indicates that the contents of the register are not current.
However, if the DATA CARRIER DETECT line is
HIGH, the RDRF line will also indicate the register is
empty.

Bit 1, TRANSMIT DATA REGISTER EMPTY
(TDRE): When this bit is HIGH it indicates that the
transmit data register contents have been transferred
and that new data can be entered. The LOW state indi-
cates that the register is full and that transmission of a
new character has not begun since the last WRITE-
DATA command.

Bit 2, DATA CARRIER DETECT (DCD): This
bit is HIGH when the DCD input from a modem has
gone HIGH to indicate that a carrier is not present.
When the DCD input line goes HIGH, it causes an inter-
rupt request to be generated when the RECEIVE
INTERRUPT ENABLE is set. It remains HIGH after

the DCD input is returned LOW until cleared by first
reading the status register and then the data register
or until a MASTER RESET signal occurs. If the DCD
input remains HIGH after a READ STATUS, READ
DATA, or MASTER RESET has occurred, the DCD
status bit remains HIGH and will follow the DCD input.

Bit 3, CLEAR TO SEND (CTS): This bit indicates
the state of the CLEAR TO SEND input from a modem.
A LOW CTS indicates that there is a CTS signal from
a modem. When the CTS bit is HIGH the TDRE bit is
inhibited. The MASTER RESET signal does not affect
the CTS status bit.

Bit 4, FRAMING ERROR (FE): When HIGH, this
bit indicates that the received character is improperly
framed by a start and a stop bit and is detected by the
absence of the first stop bit. A synchronization error,
a faulty transmission, or a break condition will all signal
an error. The FE line is set or reset during the receive
data transfer time. Therefore, this error indicator is
present throughout the time that the associated charac-
ter is available.

Bit 5, RECEIVER OVERRUN (OVRN): This is
also an error indicator that lets you know if one or more
characters in the data stream were lost. That is, a char-
acter or a number of characters were received but not
read from the RECEIVE DATA REGISTER prior to
subsequent characters being received. The overrun con-
dition begins at the end point of the last bit of the sec-
ond character received in succession without a read
operation performed on the RECEIVE DATA REGIS-
TER. The OVRN signal does not occur in the status
register until the valid character prior to OVRN has
been read and the RDRF bit remains set until OVRN is
reset. Character synchronization is maintained even dur-
ing the OVRN condition but to reset the OVRN indicator
data must be read from the RECEIVE DATA REGIS-
TER or the circuit receives a MASTER RESET signal.

Bit 6, PARITY ERROR (PE): The PE signal, when
HIGH, indicates that the number of Is in the received
character does not agree with the preselected odd or
even parity. (Odd parity is defined as when all the is
add up to an odd number and even parity when all the is
add up to an even number.) As long as the mismatched
character is in the RECEIVE DATA REGISTER the
PE line will be HIGH. If no parity is selected, then both
the transmitter parity generator output and the receiver
parity check results are inhibited.

Bit 7, INTERRUPT REQUEST (IRQ): This signal
indicates the state of the IRZ output. Any interrupt
condition with its applicable enable will be indicated
in this status bit. Anytime the IRZ output is LOW, the
IRQ bit will be HIGH to indicate the interrupt or service
request status.

Connecting the optional jumpers on the board de-
pends on the type of terminal being used, the desired
communications rate, and the address of the port. A
typical sequence of jumper set up might be the following:
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The four octal addresses noted in the chart below represent the con-
trol and data channels of Ports 0 and 1. Even-numbered addresses
indicate control channels and odd-numbered addresses indicate data
channels. The first two addresses are Port 0 and the second two are
Port 1, so that for addresses 000-003 , 000 is the control channel of
Port 0; 001 is the data channel of Port 0; 002 is the control channel
of Port 1; and 003 is the data channel of Port 004.

I/O ADDRESS SELECTION CHART

Address
Octal Connections

000-003 A7 A6 A5 A4 A3 A2

004-007 A7 A6 AS A4 A3 A2

010-013 Al A6 A5 A4 A3 Al
014-017 Al A6 A5 A4 A3 A2

020-023 A7 A6 A5 A4 A3 Al

024-027 A7 A6 A5 A4 Al A2

030-033 Al A6 Al A4 A3 Al

034-037 Al A6 Al A4 A3 A2

040-043 Al Al A5 A4 Al Al

044-047 Al A6 A5 A4 Al A2

050-053 Al A6 A5 A4 A3 Al

054-057 Al Al A5 A4 A3 A2

060-063 Al Al A5 A4 A3 Al

064-067 A7 A6 AS A4 A3 A2

070-073 Al A6 A5 A4 A3 Al

074-077 Al A6 A5 A4 A3 A2

100-103 Al A6 A5 A4 Al Al

104-107 Al A6 Al A4 Al A2

110-113 Al A6 Al A4 A3 Al

114-117 A7 A6 A5 A4 A3 A2

120-123 Al A6 Al A4 Al Al

124-127 Al A6 Al A4 Al A2

130-133 Al A6 Al A4 A3 Al

134-137 Al A6 A5 A4 A3 A2

140-143 A7 A6 AS A4 A3 Al

144-147 Al A6 A5 A4 A3 A2

150-153 Al A6 A5 A'4 A3 Al

154-157 Al A6 A5 A4 A3 A2

160-163 Al A6 A5 A4 Al Al

164-167 Al A6 A5 A4 A3 A2

170-173 Al A6 AS A4 A3 Al

174-177 Al A6 AS A4 A3 A2

200-203 A7 Al A5 A4 Al Al

204-207 A7 Al Al A4 Al A2

210-213 A7 Al Al A4 A3 Al

214-217 A7 Al Al A4 A3 A2

220-223 A7 Al Al A4 Al Al

224-227 A7 Al Al A4 Al A2

230-233 A7 Al Al A4 A3 Al

234-237 A7 A6 A5 A4 A3 A2

240-243 A7 Al A5 A4 Al Al

244-247 A7 Al A5 A4 Al A2

250-253 A7 Al AS A4 A3 Al

254-257 A7 Al AS A4 A3 A2

260-263 A7 Al A5 A4 Al Al

264-267 A7 Al A5 A4 Al A2

270-273 A7 Al A5 A4 A3 Al

274-277 A7 Al A5 A4 A3 A2

300-303 A7 A6 Al A4 Al Al

304-307 A7 A6 A5 A4 Al A2

310-313 A7 A6 Al A4 A3 Al

314-317 A7 A6 Al A4 A3 A2

320-323 A7 A6 Al A4 Al Al

324-327 A7 A6 Al A4 Al A2

I/O ADDRESS SELECTION CHART

Address
Octal Connections

330-333 A7 A6 AS A4 A3 Al
334-337 A7 A6 Al A4 A3 A2
340-343 A7 A6 A5 A4 Al Al
344-347 A7 A6 AS A4 Al A2
350-353 A7 A6 A5 A4 A3 Al
354-357 A7 A6 AS A4 A3 A2
360-363 A7 A6 A5 A4 Al Al
364-367 A7 A6 A5 A4 Al A2
370-373 A7 A6 A5 A4 A3 Al
374-377 A7 A6 A5 A4 A3 A2

Fig. 6.13 Address selection chart for the Pertec 88-
2SIO board.

1. Select the desired board address via jumpers A2 to
A7, making sure that the address is not used by
another board (Fig. 6.13).

2. Wire the 10-pin connector for each port being used
for either RS-232, TTL, or 20 mA interfaces to the
D-type connector used on the rear of the cabinet
(Fig. 6.14).

3. Select the desired baud rate for each port.
4. Decide on the interrupt priority by using a single-

level interrupt system , no interrupt at all, or even a
multiple-priority interrupt using an optional 88-
Vector Interrupt control card.

Don't Want Serial? Go Parallel

Although serial communications circuits are the
simplest to interconnect, it takes longer for data words
to be transmitted since each 8-bit word is sent along
with start and stop bits as well as possibly a parity bit.
Therefore, typically 10 clock pulses are required to
send each word. Transmission can be sped up by that
factor of 10 if all the bits in a data word are transmitted
simultaneously (in parallel). Special circuits that can
interface the CPU to the outside world can be built to
accept parallel data words. For example, to get in and
out of the Altair computer system MITS offers the
88-4PIO, a quadruple parallel port (Fig. 6.15). The
board uses four 6820s (peripheral interface adapters
developed by Motorola) to provide four 8-bit I/O ports
(Fig. 6.16).

The basic input and output timing operations are
the same as used for the 88-2SIO board discussed on
page 61. However, each 4-PIO board requires 16 ad-
dresses, four for each port. On the diagram for the
board shown in Fig. 6.17, only four jumpers are needed
to set up the board address. Thus any one of 16 88-4PIO
boards can be selected.

Address lines A2 and A3 enable selection of one of
the four 6820s. Each port contains two sections, A and
B, and each of the sections contains two channels -one
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RS-232 Voltage Levels (± 12 Volt Levels)

Port 0 Port 1

Signal Jumper Jumper Jumper Jumper

1. Receive D3 to 14 13 to S1-7 E3 to J1 J2 to S2-7

2. Transmit D5 to N4 N3 to S1-8 E5 to N6 N5 to S2-8

3. Ground* - S1-4 to S1-10 - S2-4 to S2-10

4. Clear to Send (CTS) D2 to 17 18 to S1-1 E2 to 12 11 to S2-1

5. Data Carrier Detect (DCD) D1 to 15 16 to S1-2 E1 to J3 J4 to S2-2

6. Request to Send [ (RTS), D4 to N2 N1 to S1-3 E4 to N8 N7 to S1-3

also can be used for Data
Terminal Ready]

*If Receive, Transmit, and Ground are all that your I/O device requires, ignore the other signal

connections.

TTL Voltage Levels

Port 0 Port 1

Signal Jumper Jumper Jumper Jumper

1. Receive D3 to K12 K11 to S1-9 E3 to K2 K1 to S2-9

2. Transmit D5 to M1 M2 to S1-5 E5 to M5 M6 to S2-5

3. Ground* - S1-4 to S1-10 - S2-4 to S2-10

4. CTS D2 to K8 K7 to S1-1 E2 to K6 K5 to S2-1

5. DCD and/or Data Termi-
nal Ready

D1 to K10 K9 to S1-2 E1 to K4 K3 to S2-2

6. RTS, also can be used for
Data Terminal Ready

D4 to M3 M4 to S1-3 E4 to M7 M8 to S2-3

*If Receive, Transmit, and Ground are all that your I/O device requires, ignore the other signal

connections.

TTY 20 mA Current Loop
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Port 0 Port 1

Signal Jumper Jumper Jumper Jumper Jumper Jumper Jumper Jumper

1. Receive D3 to K12 K11 to Y7 Y8 to S1-6 Y9 to S1-7 E3 to K2 K1 to Y16 Y17 to S2-6 Y18 to S2-7

2. Transmit D5 to L1 - - Z2 to S1-5 E5 to L3 - - Z1 to S2-5

3. Ground* - - - S1-4 to S1-10 - - - S2-4 to S2-10
4. CTS D2 to K8 K7 to Y1 Y2 to S1-8 Y3 to S1-9 E2 to K6 K5 to Y10 Y11 to S2-8 Y12 to S2-9

5. DCD and/or Data D1 to K10 K9 to Y4 Y5 to S1-1 Y6 to S1-2 E1 to K4 K3 to Y13 Y14 to S2-1 Y15 to S2-2

6.
Terminal Ready
RTS, also can be used D4 to L2 - - Z4 to 51-3 E4 to L4 Z3 to S2-3
for Data Terminal
Ready

*If Receive, Transmit, and Ground are all that your I/O device requires, ignore the other signal connections.

Fig. 6.14 I/O connector and interface jumper set-up procedure for the 88-2SIO board from Pertec.

for control and status, and one for data. Address lines
AO and Al enable the selection of port section A or B
and the selection of the control/status or data channel.
If the address-selection jumpers are wired for 00 to OF,
the port, section, and channel addresses would appear
as shown in Fig. 6.18.

Each port section, A and B, contains three regis-
ters, eight data lines, two control lines, and an interrupt-
request output. One of the registers is the control/status
register -a read/write register that holds eight bits

split into four function groups (Fig. 6.19a) interrupt
request, C2 control, DDR control, and Cl control.

Bits 7 and 6, the interrupt-request bits, are unaf-
fected during write operations but are used as interrupt
indicators. Bit 7 is an interrupt-status bit that indicates
the activity of the external control line Cl, the input
control line from the external device. C l affects status
bit 7 and the interrupt-request output to the system bus
IRQ. Control bits 1 and 0 define the operation of the
Cl line as defined in Fig. 6.19b. Bit 7 and IRQ are reset
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Fig. 6.15 The 88-4PIO board from Pertec offers four
8-bit parallel ports. (Courtesy Pertec)
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Fig. 6.16 Internal block diagram of the 6821 PIA
dual parallel 8-bit port developed by Motorola.

(bit 7 goes LOW and IRQ goes HIGH) when the data
register is read by the CPU. The C2 control line can
function as either input or output for the 1/0 device.
Control bits 3, 4, and 5 of the control/ status word deter-
mine the operating mode of C2, as shown in Fig. 6.19c.

Sections A and B operate identically when C2 is set
as an input. As an output, C2 functions uniquely for
sections A and B. Each section has a C2 control line,
marked as CB2 for the sections, respectively. Control
bits 5, 4, and 3 are shown in Figs. 6.19d and e. In both
cases, the enable pulse E is a strobe signal that locks
the word into the port every machine cycle and also
partially enables the port to read or write.

• CAI

CA2

-_ PAO-PA7

PRO-PB7

DI
BUS

DO
BUS

BUFFERS

tn

INTERRUPT
CONTROL

PIA
M

CBI

PB
CBI

^- 2

VECTOR
INTERRUPT
OUTPUTS

Fig. 6.17 Block diagram of the Pertec 88-4PIO board.

To write into a control register, each accumulator
bit must be set according to the chart in Fig. 6.19d or e;
next, an OUT instruction must be executed with byte 2
of the instruction equal to the control channel address.
Also, data lines must be entered as input or output. All
ports are reset when power is first applied, thereby
resetting the data lines and the C2 line for both sections
as inputs. The data-channel address permits access to
either the data register or the data direction registers
(DDR). The status of bit 2 in the control register deter-
mines whether the data register or the DDR is accessed.
If bit 2 is LOW, DDR is accessed, and if HIGH, the data
register is accessed. Writing a LOW into a bit of the
DDR causes the corresponding data line to act as an
input; writing a HIGH into a bit of the DDR causes the
corresponding data line to act as an output. The pro-
gram necessary to initialize a port to interface a parallel
I/O device is shown in Fig. 6.20. The board is addressed
at location 10 to IF hex (16 to 31 decimal) and in the
example shown, port 0 and addresses 10 to 13 hex are
used. The addresses are set up so that 10 is A control,
I l is A data, 12 is B control, and 13 is B data. The A
section of the port functions as an input and the B sec-
tion functions as an output.

This initialization procedure causes the following
communication between the I/O device and the CPU:

Input

1. If the I/O device has valid data, a strobe signal from
the I /O device pulls the CAI input LOW; bit 7 of
the A control register goes HIGH ; IRQA goes LOW;
and CA2 goes HIGH. CA2 operates as a "busy" sig-
nal back to the I /O device.
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ADD PORT IC LETTER SECTION CHANNEL

Octal Decimal C111 1 A D

2 2 C

3 3 B D

C

H i K C

D

,o 8 ^ c

11 9 D

12 10

2 L
C

13 11 B D

14 12 C

15 13

^

D

16 14 3 M
B

C

17 15 D

C = Control D = Data

Fig. 6.18 Port, section, and channel address definitions for board address jumpered for 00 to OF.

2. If interrupts are used, an interrupt is generated and
the next step is jumped. If the interrupts are not
used, the CPU periodically inputs the A control
register in order to interrupt the status of bit 7.
When bit 7 is HIGH, the next step is entered.

3. Data are input to the accumulator which, in turn,
resets bit 7, IRQA, and CA2. The transition of CA2
tells the 1/0 device that new data may be entered.

Output

1. CBI is pulled LOW by the I/O device when it is
ready to receive new data.

2. If interrupts are used, an interrupt is generated and
the next step is entered. If interrupts are not used,
the CPU periodically inputs the B control register
to examine the status of bit 7. When bit 7 is HIGH
the next step will be entered.

3. Data are output to the I/O device and thus latched
into the port outputs. CB2 goes LOW when the next
E pulse goes HIGH and returns LOW when the E
pulse goes HIGH again. The CB2 line can also be
used to strobe data into the I/O device. Pulse width
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of the CB2 signal ranges from 1.5 to 3.5 is, depend-
ing on the instruction being executed.
Communication between the I/O device and the

CPU can be handled with software by having the CPU
program periodically test the status of the I / O device.
When a ready bit is detected, the I/O device is serviced.
However, in some applications the CPU may not be able
to do a periodic check because it's too busy, so the
I/O device can interrupt the processor by signaling
the processor on the IRQ line. There are two methods
of interrupting the processor-the 88-VI board, an
optional board, provides eight levels of vectored inter-
rupt and is important in systems where several I/O
devices of different priority must be serviced. The other
option is just a single interrupt set up on the 88-4PIO
board itself by jumpering the particular port interrupt
request line(s) (JA, JB, KA, KB, etc.) to the PINT line.
When an interrupt occurs the PINT lines goes LOW,
and when the CPU finishes executing its current instruc-
tion, the program counter contents are pushed onto a
stack (a reserved memory location) and the processor
jumps to location 39. The I/O device service program
must then start at location 39; the return instruction
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Bit No. 7 6 5 4 3 2 1 0

Function Interrupt
Request

C2 Control DDR
Control

C1 Control

Control Bits

1 0 C1 Input Status Bit 7 IRQ Output

0 1 Active LOW Set HIGH when C1 is active Disabled-remains HIGH
0 1 Active LOW Set HIGH when C1 is active Goes LOW when bit 7 goes HIGH
1 0 Active HIGH Set HIGH when C1 is active Disabled-remains HIGH
1 1 Active HIGH Set HIGH when C1 is active Goes LOW when bit 7 goes HIGH

Control Bits

5 4 3 C2 Status Bit 6 IRQ

0 0 0 Active LOW Set HIGH when C2 is active Disabled-remains HIGH
0 0 1 Active LOW Set HIGH when C2 is active Goes LOW when bit 7 is HIGH
0 1 0 Active HIGH Set HIGH when C2 is active Disabled-remains HIGH
0 1 1 Active HIGH Set HIGH when C2 is active Goes LOW when bit 7 is HIGH

A Section
Control Bits CA2

5 4 3 Cleared Set

1 0 0 LOW after E pulse, following read HIGH when CA1 is active

1 0 1
of A data channel

LOW after a read of A data channel HIGH following next E pulse
1 1 0 Always LOW when bit 3 is low
1 1 1 Always HIGH when bit 3 is high

B Section
Control Bits CB2

5 4 3 Cleared Set

1 0 0 LOW when E pulse goes HIGH, following HIGH when CB1 is active

1 0 1

a write of B data channel
LOW when E pulse goes HIGH, following HIGH when next E pulse goes HIGH

1 1 0

a write of B data channel
Always LOW when bit 3 is LOW

1 1 1 Always HIGH when bit 3 is HIGH

Fig. 6.19 These five charts define the register set-up procedures for the 6821 parallel interface
adapters used on the 88-4-PIO card.

may be used to end the service routine and bring the
CPU back by returning the contents of the program
counter from the stack.

Combine Functions onto a Single Board

If you don't want your system to be too large, you
may not want to use a separate board for serial inputs

and another board for parallel inputs. Well, you can
often combine the functions on a single board-say two
parallel ports, one serial port, and even more. That's
what several companies have done-Processor Tech-
nology offers a board dubbed the 3P + S that holds
three parallel ports and one serial port. Xitan/Technical
Design Labs offers a board called the SMB that contains
two serial I/O ports, a parallel I/O port, a serial cas-
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Location Instruction Code

0 MVIA 076

1 <B2> 000

2 OUT 323

3 <B2> 020

4 OUT 323
5 <B2> 022

6 OUT 323

7 <B2> 021

10 MVIA 076

11 <B2> 377

12 OUT 323

13 <B2> 023
14 MVI 076

15 <B2> 045

16 OUT 323
17 <B2> 020
20 MVI 076
21 <B2> 054
22 OUT 323

23 <62> 022

Description

Set bit 2 of both control registers to 0 in
order to write to the DDRs.

Write all Os to DDR of A Section to en-
able A data lines to act as inputs.

Write 1s into DDR of B Section to en-
able B data lines to act as outputs.

Set A control register:*

7 6 5 4 3 2 1 0

1 0 0 1 0 1

Set B control register:*

7 6 5 4 3 2 1 0

1 0 1 1 0 0

*See description of C1 and C2 for above settings.

Fig. 6.20 This simple machine code program initializes a port to interface to a parallel I/O device.

sette interface port, as well as 2048 words of ROM-based
programs and 2048 words of RAM storage, and Imsai
offers a board dubbed the MIO that contains two paral-
lel ports, one serial port, one serial cassette interface
port, and one control port. Typically, these boards
have all you need for a small system-a serial inter-
face for the CRT or teletypewriter terminal; two par-
allel interfaces, one for a printer and one for another
device; and a cassette interface used to provide bulk
storage of programs on standard cassette tapes (more
about this in a later chapter).

Other Designs Provide Different Performance

The MIO board offered by Imsai approaches the
multiple interface problem for the 8080 from another
angle. It contains only one serial I/O port for a teletype-
writer or CRT terminal but has two 8-bit parallel 1/0
ports, one cassette interface that will store or read data
on a standard audio cassette, and one control port used
for internal and external control. No software is in-
cluded on the board and there is no RAM workspace.
The board is jumper selectable to any one of 64 blocks
of four locations of I/O addresses. Additional jumper
selection allows each port to be set up in any order
within the selected group of four addresses. Along the
top of the board are three 26-pin connector finger re-
gions that provide the serial and dual 8-bit ports SIO,
P102, and PIO1, respectively, from left to right (see Fig.
6.21 on the next page). Just to the left of the P102
connector and to the right of the SIO are connections for

two cassette tape recorders. Either an RS-232 or 20-mA
current-loop is available on the serial port.

Any of the status signals from the I/O ports may
be used to generate interrupts. Provisions are included
to jumper the status signals to the interrupt lines such
as on an optionally available priority interrupt con-
troller board, if used, or the signals can be directly
jumpered to the CPU interrupt line for a single level of
interrupt.

The serial I/O port can be set so its baud rate is
jumper selectable from 45.5 to 9600 baud, the character
length can be set, the parity enable and even/ odd parity
can be jumper selected, the on-board UART can be set
to transmit or receive RS-232, 20-mA current-loop, or
TTL levels, and the UART status signals can be moni-
tored using the control input port on the interrupt'
inputs. There are eight status signals that the port can
deliver-TRANSMITTER READY, TRANSMITTER
READY, RECEIVE READY, RECEIVE READY,
PARITY ERROR, OVERRUN ERROR, FRAMING
ERROR, and an error indicator SIOS that indicates
when either a parity, overrun, or framing error (PE,
OE, or FF) has occurred.

Each parallel port accepts or delivers an 8-bit data
word and a strobe signal. The strobe is used to indi-
cate to the computer or the external equipment that
the data in the port I/O lines are valid. Not only can
the ports be programmed to act as inputs or outputs,
but the strobe signal can be programmed to indicate
valid data in any of four ways:

1. on the rising edge of the strobe;
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Close-up view of the MIO board organization shows the various I/O interfaces along the top edge of the board. (Courtesy

2. on the falling edge of the strobe;
3. on the logic HIGH level;
4. on the logic LOW level.

In addition to the strobe signal, there are three
more control signals supplied with each port-an ODR
(output data ready signal), an IDA (input data accepted)
signal, and a PIOS (port I/O status) signal to indicate
and control operation of the port. Through the use of
four 8212 8-bit latches (one as an input and one as an
output for each port) separate input and output lines are
available, so the interface to the bus can be simplified.
Each output port thus has eight data lines and three
control lines. Each input port has eight data lines and
two control lines. All signals are available via the 26-
finger connector on the upper right of the board.

The cassette interface on the board permits you to
record data from the computer's memory onto magnetic
tape or load data into the memory using an ordinary

tape recorder. Data rates for record or playback can
be set from 500 to 62,500 bits per second. The phase
of the signal can be jumper selected so that any recorder
can be used. Data are stored on tape in a biphase en-
coded format that is compatible with both the Bytel
Lancaster (often called the "Kansas City" format) or the
Tarbell data formats (more about these in a later chap-
ter). The biphase encoding generates the Bytel Lancaster
data format by sending alternating ones and zeros when
a zero bit is to be recorded and sends all ones when a
one bit is to be recorded. In this format, the maximum
data rate is 30 bytes per second. For the Tarbell format,
one bit of phase encoding is used for each data bit. This
format lets you handle data at 187 bytes per second or
faster if the recorder used is a high-quality unit. On
the board is room to connect two tape recorders, but
only one recorder can be used at a time. Full informa-
tion about cassette interfaces will be discussed in a later
chapter.



CHAPTER 7

Peripheral Storage Devices for
Microcomputer Systems

Using the serial or parallel interfaces described in
the previous chapter permits information to be entered
into or fed out of the computer by a combination of
software and hardware to control the flow of data. How-
ever, the computer system still has two limitations.
First, there is no way to permanently store large pro-
grams or data before turning off the system for the day.
Since most programs or data are held in RAM, when
power is shut off, RAMs lose whatever information
they hold. And, each time the system is turned on,
the previous programs, data, or new programs should
be easily loadable into the computer. Second, there is
no permanent record (hard copy) of the data so that
data or programs can be examined without always us-
ing the system.

The first limitation can be overcome in one of three
possible alternatives:

1. Use a paper-tape reader/punch for permanent
data storage and retrieval. It provides a nonalterable
medium once the paper is punched (Fig. 7.1a).

Fig.7.1 Magnetic tape (a), paper tape (b), and floppy
disks (c) are three popular mediums used to store and
read in large amounts of data. (Photo by R. Meehan)

2. Use magnetic-tape storage for permanent but
alterable storage of data. Depending on the amount of
storage, tape drives for either cassettes, cartridges, or
open rolls of tape can be used (Fig. 7.1b).

3. Use rotating magnetic disks to store data either
on a permanent or temporary basis. These disks, sim-
ilar to 45 RPM records, are referred to as floppy disks
since they are flexible and "flop" from side to side when
not in motion (Fig. 7.1c).

If your system is built with some form of printing
terminal you already have the second limitation licked.
However, if you decided on a low-cost CRT terminal
to use with the computer, you might still want some
form of hard-copy output. To provide the hard copy,
you have a choice of many different types of printers
that come in a wide range of capabilities and prices.
We'll talk more about printers later in the chapter.

Storing Your Programs -Which Way to Go?

Picking the right type of storage media-paper
tape, magnetic tape, or floppy disk-for your system
can be a problem unless you have a fairly good idea
what sort of use you're planning. Paper tape is best only
when you want to load in a program or permanently
store information or programs for later use. Cassettes
offer more flexibility, permitting you to load, store, and
alter data. However, both paper tapes and cassettes can
require fairly long amounts of time to load in or store
(dump) large amounts of information-typical times
range from a few seconds to several minutes. Floppy
disks offer the advantages of cassettes but with faster
speeds and 'more of a random-access capability. Any
place on the disk can be reached in less than a second
while in a high-quality tape drive it can take several sec-
onds to locate the information to be loaded in.

Ideally, then, the floppy disk and its drive offer the
best performance in terms of speed, flexibility, and
storage capacity. However, there is a catch-floppy
disk drives are still very expensive ($400 and up), espe-
cially if you include the cost of the complex circuitry
needed to control the drive and prepare the data for
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Fig. 7.2 An inexpensive paper-tape reader that requires
manual tape movement, this unit, developed by Oliver
Audio Engineering, interfaces very simply to any com-
puter system. (Courtesy Oliver Audio)

storage or loading. The combination paper-tape reader/
punch is probably next on the list of the more expen-
sive program entry/ storage devices ($300 and up). And,
in addition to the reader/ punch you will need either a
parallel or serial interface for the computer, depending
on the type of 1/0 required by reader/ punch. The audio
cassette is the lower cost of digital storage available. By
using an audio tape recorder, that costs anywhere from
$40 on up, and an interface circuit such as the Kansas

Fig. 7.3 The H-10 paper-tape reader/punch provides
computer controllable operation at minimal cost.
(Courtesy Heath Co.)

City Standard or Tarbell circuits, a complete bidirec-
tional interface can be built for under $200. However
it does lack many of the desirable features found in disk
systems-no random access capability, hard to keep
track of data, hard to relocate data on tape, and hard
to rapidly store and retrieve data.

There are many low cost ways to enter data if that's
all you want to do-inexpensive paper-tape readers are
available from several companies for less than $100.
One of the most popular units is the Oliver Audio Engi-
neering OP-80A (Fig. 7.2). It is a manually operated
paper-tape reader (you must pull the tape through by
hand) and is useful only to load programs in the com-
puter through a parallel 1/0 port. The concept of the
paper-tape reader is very simple: light shining in through
a series of nine possible holes in the tape hits an equal
array of electrically matched phototransistors that, in
turn, trigger a series of nine electrically matched timing
circuits that provide the 8-bit digital code and the strobe
signal to let the port know valid data are present.

However, loading paper tapes into the computer by
hand is a tedious process-especially if the tape is long.
If the programs to be loaded are less than several thou-
sand bytes, the manual reader is a handy device. But
when programs grow beyond that, you'll end up pulling
hundreds of feet of paper tape through the reader by
hand. To solve that problem some companies have
come up with a small battery operated tape winder that
can pull the tape through fairly fast and at a constant
speed. An even better investment though is a complete
paper-tape reader/punch that is electromechanically
controlled.

Heathkit has recently introduced a complete kit
at a cost of $350 (catalog) that contains an electro-
mechanical paper-tape reader and paper-tape punch
with a parallel output-the H-10 (Fig. 7.3). Even at that
price it is the lowest cost unit that can punch as well as
read paper tapes. There are also many surplus bargains
available for the sharp shopper. However, you'll prob-
ably have to spend a minimum of 10 to 20 hours just to
figure out the appropriate interface necessary to mate
the unit to your system. Or if you had the money to
invest when you decided on a terminal, for $800 and
up you could purchase an ASR-33 teletypewriter to get
hard-copy and paper-tape capability.

The major specifications for the H10 include a read
speed of 50 characters per second and a punch speed
of 10 characters per second. The unit can use standard
1-in.-wide roll or fan-fold eight-level paper tape. Both
the punch and reader circuits are completely indepen-
dent and may thus be operated simultaneously. Features
of the H 10 include a copy mode for tape duplication, a
built-in heavy-duty power supply, and a stepper motor
for reliable reader tape drive. The interface to the H10
requires TTL levels and consists of eight data bits, a
strobe signal, a control signal for the reader, and an-
other similar set of lines for the punch.
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There are three control signals available for 'the
H10 punch-a PUNCH START line, a PUNCH
READY line, and a PUNCH READY line. The first
line is used to initiate a punch cycle; when it goes LOW
and is held LOW for at least 200 ns, the punch cycle will
start . If the line is constantly held LOW, the punch will
run at maximum speed . The other two punch control
lines are complements of each other so only one of the
two lines is really needed , depending on your system.
On the PUNCH READY line, a HIGH state indicates
the punch is ready. A TTL LOW level is present within
200 ns after the leading edge of the PUNCH START
input signal and remains LOW until the punch is ready
for the next character . The PUNCH READY line must
be LOW to indicate the punch is ready. A TTL HIGH
level is present within 200 ns after the leading edge of
the PUNCH START input signal and stays HIGH un-
til the punch is ready for the next character.

Only two reader control lines are available-a
READER START and READER READY line. The
READER START line advances the paper tape in the
reader one character each time a HIGH -to-LOW tran-
sition occurs . A LOW must be held for at least 100 ns.
The READER READY line indicates that output data
bits are valid . This signal goes HIGH within 200 ns
after the leading edge of the READER START signal
and remains HIGH for approximately 16.5 ms. The
READER START input can only be pulsed when the
READER READY line is LOW. Signal lines are basi-
cally TTL. The PUNCH READY, PUNCH READY,
and READER READY output lines require a LOW
to be less than 0 .4 V, and they can sink 16 mA each. The
outputs are open collector with 1000 CI pull-up resistors
to 4.4 V. The PUNCH START and READER START
inputs require a LOW to be less than 0.8 V and can sink
1.6 mA each. HIGHS must be greater than 2 V but less
than or equal to 5.5 V. Inputs must not be negative with
respect to circuit ground (common).

On the H10 connector there is only one other Line-
a common ground line so that the reader / punch ground
can be connected to the ground in the rest of the system.
The front panel of the H 10 has four control switches-
POWER ON/OFF, READ, FEED, and PUNCH. The
POWER switch turns on both the reader and punch
and puts all circuitry in a standby mode. When the
READ switch is pressed the reader circuitry is enabled
and will operate when a READER START signal is re-
ceived. When not used , the READER READY line at
the output connector is HIGH . The FEED switch just
advances the tape in the reader by activating only the
tape drive mechanism . Lastly, the PUNCH switch,
when pressed enables the punch . Data can then be ac-
cepted from either the reader circuits or the data input
lines, and a tape punched . Another switch mounted on
the rear of the H 10 determines whether the H 10 is copy-
ing a tape or accepting data from the input lines.

However, no matter which punch or reader you

Fig.7.4 The Tarbell cassette interface, shown here,
permits an ordinary cassette tape recorder/player to
be used as a computer's memory for permanent rec-
ord storage. (Photo by J. Bierman)
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have, the largest problem with its use is that data can-
not be altered once the tape is punched . To correct the
error a new tape must be punched-a time-consuming
and wasteful process. Magnetic tape offers an easier
alternative-and at a lower cost.

Storing data on magnetic tape can be done with
many different recording techniques and with many
methods to code the data bits before they are recorded.
The simplest method to store data on tape uses the com-
mon audio cassette , a cassette recorder, and an inter-
face that transforms each parallel data word into a
serial pulse train which is then transferred into audio
frequency variations and finally recorded on tape. To
retrieve data already recorded on tape, the audio signal
is first transformed back into digital form and then
decoded and put back into parallel form . There are cur-
rently two, almost "standard ," methods in use today
by the hobbiest community . They are the Tarbell and
the Kansas City Standard cassette interfaces.

Boost Data Entry and Storage Speed
with Cassettes

The Tarbell cassette interface (Fig. 7.4) provides a
data entry or record speed of up to 540 bytes per second
when a high-quality tape recorder is used (over $70
typically). With a simpler recorder such as the J. C.
Penney model 6536 (about $40) data rates of 187 bytes
per second are possible (three to 20 times the speed of
paper tape). And, if you make the necessary modifica-
tions, the circuit can also work with data recorded ac-
cording to the Kansas City Standard at 27 bytes per
second. When a higher quality tape drive is used, such
as the Phi Deck made by Triple I Corp. (Fig. 7.5), record
and playback speeds of up to 1000 bytes per second are
possible. The suggested tape for use is the Scotch Low-
Noise, High-Density audio tape although any good qual-
ity tape can be used. Ideally, the recorder should have
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Fig.7.5 For high data transfer rates ( higher than
possible with ordinary tape recorders), digital tape
decks such as this unit can transfer data at over
1000 bytes/second . (Courtesy Triple I Corp.)

a good high-frequency response up to 8000 Hz, a tone
control, a digital counter, and operate from the ac line.

Basically, the cassette interface works as follows:
when data are to be recorded on the tape (Fig. 7.6a),
the parallel data are first loaded from the computer's
data bus into a parallel-input shift register. Then the
register is clocked and its serial input is Exclusive-ORed
with the clock, thus producing a biphase data stream.
These data go directly into the cassette recorder's mi-

SERIAL BINARY DATA 1 I

CLOCK ( PIN 2-9) , I

NRZ DATA (PIN 23-9)

BI-PHASE TO TAPE (30-4)

I I I 1 0 1 0 1 1

crophone input. The more difficult process is recover-
ing the data. To recover the digital data from the
biphase recording, a comparator, a one shot, and an
exclusive-OR gate combined in a single chip (an 8T20
made by Signetics) can be used to first transform the
?layed-back signal into digital levels, then restore the
correct pulse widths, and then regenerate the proper
number of pulses (Fig. 7.6b).

The data transfer speed may not seem too impor-
tant, but if you use a cassette interface, a good portion
of your time will be spent loading and storing data and
programs. There is a world of difference between load-
ing a BASIC operating system at the 30 bytes per second
(about 4 minutes for 8 kbytes) and at 187 bytes per sec-
ond (40 seconds), especially if you have to repeat the
process several times. Jacks on the tape recorder for a
remote control input and a direct line input are invalu-
able to help simplify the overall interface.

Before looking at exactly how the Tarbell interface
works let's look at the Tarbell and Kansas City "stand-
ards" used to record data on the tape. The Tarbell in-
terface uses a base frequency of 3000 Hz (when set for
a 187 byte per second rate). A ONE is generated by
writing a word of all ZEROs (00000000), and a ZERO
is generated by writing a word of alternating ONEs and
ZEROS (01010101). The Kansas City interface (often
referred to as the Byte/ Lancaster format) writes each
8-bit byte onto the tape with one start bit (a ZERO),
eight data bits (ZEROs or ONEs) and two stop bits
(ONEs). A ONE is defined as eight cycles at a frequency
of 2400 Hz and a ZERO is defined as four cycles at a

I I 1 0 1 1 II I 1 1 0 1 0 1 1 1 1 I

(A)

AUDIO FROM TAPE

RECOVERED BI-PHASE
(30-II)

EDGE DETECTOR OUTPUT X'

RECOVERED CLOCK (5-II)

RECOVERED NRZ DATA (4-9)
(INVALID HERE)

*CLOCK IS IN PROPER PHASE AFTER FIRST DATA CHANGE.

(B)

Fig. 7.6 Recording digital data onto magnetic tape requires that the digital information be changed into a frequency shift signal (a). To
recover the digital information from the cassette tape, the frequency shift signal must be restored to digital form (b). (Courtesy Tarbell

Electronics)
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CASSETTE INTERFACE OUTPUT ROUTINE

THIS PROGRAM WRITES A BLOCK OF MEMORY OUT ONTO CASSETTE TAPE. THE PRO-
GRAM IS ASSEMBLED TO START AT 3100 (HEX), BUT MAY BE REASSEMBLED TO START
ANYWHERE. THE BLOCK STARTING ADDRESS IS LOCATED AT ADDRESS 3104 (HEX).
THE BLOCK LENGTH (2 BYTES) IS LOCATED AT ADDRESS 3107 (HEX). THE PROGRAM
WILL WRITE A "W" ON THE COMMENT DEVICE WHEN IT IS THROUGH WITH ITS DATA
TRANSFER.

3100 31 43 31 LXI SP,STAK SET STACK POINTER.
3103 21 00 00 LXI H,0 GET BLOCK ADDRESS.
3106 01 00 20 LXI B,2000H SET BLOCK LENGTH = 8192.
3109 1E 00 MVI E,0 SET E = 0.
310B 3E 3C MVI A,3CH GET START BYTE
310D CD 32 31 CALL COUT OUTPUT START BYTE TO CASSETTE.
3110 3E E6 MVI A ,OE6H GET SYNC BYTE.
3112 CD 32 31 CALL COUT OUTPUT SYNC BYTE TO CASSETTE.

3115 7E LOOP MOV A,M GET A DATA BYTE FROM MEMORY.
3116 CD 32 31 CALL COUT OUTPUT DATA BYTE TO CASSETTE.
3119 83 ADD E ADD E (CHECKSUM) TO A.
311A 5F MOV E,A PUT NEW CHECKSUM INTO E.
3116 23 INX H INCREMENT MEMORY POINTER.
311C OB DCX B DECREMENT COUNTER.

311D 3E 00 MVI A,0 MAKE A=0.
311F B8 CMP B IF B NOT= 0,
3120 C2 15 31 JNZ LOOP REPEAT LOOP.

3123 B9 CMP C IF C NOT= 0.
3124 C2 15 31 JNZ LOOP REPEAT LOOP.
3127 7B MOV A,E OTHERWISE, GET CHECKSUM
3128 CD 32 31 CALL COOT AND OUTPUT IT.
312B 3E 57 MVI A,"W" WRITE "W" (END OF WRITE).
312D D3 01 OUT 1 PRINT ON CONSOLE.
312F C3 2F 31 WAIT JMP WAIT WAIT HERE WHEN DONE.
3132 F5 COUT PUSH PSW SAVE A AND FLAGS.
3133 DB 6E CLOP IN CASC READ CASSETTE STATUS.
3135 E6 20 ANI 20H CLEAR ALL BUT BIT 5.
3137 C2 33 31 JNZ CLOP TRY AGAIN IF NOT READY.
313A F1 POP PSW RESTORE A AND FLAGS.
3136 D3 6F OUT CASD OUTPUT DATA TO CASSETTE.
313D C9 RET RETURN FROM COUT.
313E 00 0
313F 00 0

3140 00 0

3141 00 0

3142 00 0

3143 00 STAK

CASD

0

EQU 6FH

Fig. 7.7 Control program necessary to output data to a tape recorder using the Tarbell interface.

frequency of 1200 Hz. This provides a data transfer rate
of 300 baud, or a little less than 30 bytes per second.

The Tarbell interface can be converted to a Kansas
City interface by first raising the 3000 Hz frequency
to 4800 Hz and, then on the input side, the sync detector
circuit must be modified to recognize the alternating
bit pattern as a sync byte in addition to the normal sync
byte of E6 (hex).

Using the Cassette Interface

The Tarbell interface is designed to plug right into
an Altair or Imsai type motherboard and connect to a
tape recorder or deck via two shielded cables that plug
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into the DIP socket on the Tarbell board. Before plug-
ging the board into the main bus, the seven switches of
the DIP switch must be set-switch 1 off, 2 off, 3 on,
4 off, 5 off, 6 on, and 7 off (input phase inversion).
Switches 1 to 6 correspond to address bits 2 to 7 and off
is a ONE, on is a ZERO. Address bit 1 can be either ONE
or ZERO since it isn't used by the interface, and ad-
dress bit 0 is ZERO for status/ control and ONE for
data. Therefore, the switch settings correspond to de-
vice address 011011XX, where X indicates the bit can be
either I or 0. This is the device select code used in all
software supplied by Tarbell.

After the switches are set, the board can be plugged
into the bus and the cables connected between the DIP
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CASSETTE INTERFACE INPUT ROUTINE

THIS PROGRAM READS A BLOCK OF BYTES FROM CASSETTE INTO MEMORY. THE PRO-

GRAM IS ASSEMBLED TO START AT 3100 (HEX), BUT MAY BE REASSEMBLED TO START
ANYWHERE, ALTHOUGH CARE SHOULD BE TAKEN TO INSURE THAT THE DATA IT IS
READING DOES NOT WRITE OVER THE PROGRAM ITSELF. THIS MAY BE ACCOMPLISHED
BY LOCATING THE PROGRAM IMMEDIATELY BELOW OR A BLOCK LENGTH ABOVE THE
DATA TO BE READ IN. THE STARTING ADDRESS FOR THE BLOCK IS LOCATED IN AD-
DRESS 3185 (HEX). THE BLOCK LENGTH IS LOCATED IN ADDRESS 3188 (HEX) (TWO
BYTES).

3180 3E 10 MVI A,1OH SET BIT 4 OF A=1.
3182 D3 6E OUT CASC RESET INTERFACE.
3184 21 00 00 LXI H,0 GET STARTING ADDRESS.
3187 11 00 20 LXI D,2000H GET BLOCK LENGTH.
318A 06 00 MVI B,0 SET CHECKSUM = 0.
318C DB 6E LOOP IN CASC READ CASSETTE STATUS.
318E E6 10 ANI 10H LOOK AT BIT4.
3190 C2 8C 31 JNZ LOOP WAIT IF NOT READY.
3193 DB 6F IN CASD READ DATA FROM CASSETTE.
3195 77 MOV M,A PUT DATA INTO MEMORY
3196 80 ADD B ADD CHECKSUM TO A.
3197 47 MOV B A PUT IT BACK IN B, .
3198 23 INX H INCREMENT MEMORY POINTER.
3199 1B DCX D DECREMENT COUNTER.
319A 3E 00 MVI A,0 CLEAR A.
319C BA CMP D IF D NOT=O,
319D C2 8C 31 JNZ LOOP READ MORE.
31AO BB CMP E IF E NOT=O,
31A1 C2 8C 31 JNZ LOOP READ MORE.
31A4 DB 6E CHEK IN CASC READ STATUS.

31A6 E6 10 ANI 10H LOOK AT BIT 4.

31A8 C2 A4 31 JNZ CHEK WAIT IF NOT READY.

31AB DB 6F IN CASD READ CHECKSUM.

31AD B8 CMP B COMPARE TO B.

31AE 3E 45 MVI A,"E" PUT CODE FOR "E" IN A.

31BO C2 B5 31 JNZ ERR IF CHECKSUMS NOT EQUAL, ERROR.

31B3 C6 02 ADI 2 ADD A 2 TO MAKE "G" IF EQUAL.

31 B5 D3 01 ERR OUT CRTD PRINT "E" FOR "G."

31B7 C3 B7 31 END
CASC
CASD

JMP
EQU
EQU

END
6EH
6FH

WAIT HERE WHEN DONE.
CASSETTE STATUS/CONTROL PORT.
CASSETTE DATA PORT.

CRTD EQU 01H CONSOLE DATA PORT.

Fig. 7.8 Control program necessary to input data to the computer from a tape recorder using the Tarbell interface.

socket and the tape recorder. The Tarbell kit comes
with a test tape which should be inserted into the re-
corder. If the recorder has a tone control make sure it
is turned to maximum (to get best frequency response)
and then turn the recorder's volume control to a middle
setting. Next, set the potentiometer of the board's in-
put section (R8) to a middle setting, turn on the com-
puter, hit the RESET switch and then press the PLAY
button on the cassette recorder. If the LED on the inter-
face does not light up after a few seconds, try adjusting
the recorder's volume control and R8 until the light
comes on.

However, if the LED still doesn't come on, try re-
versing switch number 7 (put it on) on the DIP switch
and repeat the potentiometer adjustments. Now if the
LED doesn't come on the problem is either the tape re-

corder or the receive section of the interface. Assuming
the LED does come on, it tells you that the receiver is
operating properly and is detecting the continuous
stream of sync bytes recorded on the test tape. Now,
adjust both the interface pot and the volume control
so there is some leeway on either side of center where
the LED will remain on. During normal operation the
LED will flicker since it is indicating sync bytes, not
data.

Next, the output section must be tested. This is done
by programming the computer to generate a continuous
stream of E6 bytes, the same as recorded on the tape.
First, put a blank cassette tape into the recorder and
then load the following program into the computer via
the front-panel switches or your terminal. (For back-
ground information on software, see Chapter 8.)
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0000 DB 6E Loop IN CASC Read status
0002 E6 20 ANI 20H Look at bit 5
0004 C2 00 00 JNZ LOOP Wait until ready
0007 3E E6 MVI A,0E6H Get sync byte
0009 D3 6F OUT CASD Write it onto cassette
000B C3 00,00

CASC

CASD

JMP

EQU

EQU

END

LOOP
6EH

6FH

Repeat

Status port
Data port

After the program is loaded, put all address switches
to address 0000, hit the RESET switch and then the
RUN switch. Next, turn on the tape recorder so it re-
cords data onto the blank tape. If the light doesn't come
on and stay on, the recording level may be too high or
too low. Try several levels until you find the best place.
You may also find the recording is opposite in phase
to the playback; if so, change the jumper on IC23 from
pin 9 to pin 8.

Assuming both the input and output sections check
out, the interface is now ready to be used. To perform a
save operation from the computer to the tape recorder
first requires that the computer have in its memory a
routine that tells it how to store the data. Such a routine
is shown in Fig. 7.7 (p. 75). This program writes informa-
tion stored in a block of memory onto the cassette. It is
designed to start at location 3100 (hex) but may be rear-
ranged to start anywhere. The block starting address is
located at address 3104 and the length at address 3107.
After the transfer is completed the program writes a W
onto the terminal to indicate the transfer is complete.

Once the program is in the computer, set the re-
corder's volume control, set the tape to the desired data
storage location, and start the recorder. If the volume

CASSETTE BOOTSTRAP PROGRAM
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control affects the record level, slowly increase the vol-
ume until the correct recording level is shown. Wait
about five seconds to record a leader on the tape and
then push the button that starts the output routine on
the computer (this could be the carriage return after
CSAVE in BASIC or the front-panel RUN button for
stand-alone programs). When the program indicates
transfer is complete, stop the cassette recorder.

Similarly, to load data from a cassette you also
must first tell the computer how to handle the incoming
data. Such a routine is shown in Fig. 7.8 (p. 76). This pro-
gram reads a block of bytes from a cassette into memory.
It is also intended to start at 3100 (hex), but may be rear-
ranged to start anywhere, although care should be taken
to ensure that the data being loaded don't write over the
program itself. The starting address for the block is lo-
cated at address 3185 and the block length is located at
addresses 3188 and 3189.

After the computer has this program in its memory
the tape that has the desired program should be loaded
into the recorder, the volume control should be set for
the desired level, and the computer should be set so all
it takes is the push of one button. Start the cassette re-
corder in the playback mode and press the button on the
computer that starts the input routine (in BASIC this
could be the carriage return after CLOAD or the front-
panel RUN button for stand-alone programs). When
the program indicates it has completed the load, stop
the cassette recorder. Remember, the memory into which
data are read must be unprotected.

For simple program load operations, another, much
shorter program can be used. The cassette bootstrap pro-

2F00 3E 10 MVI A,1 0H SET BIT 4 of A= 1.
2F02 D3 6E OUT CASC RESET INTERFACE.
2F04 21 00 00 LXI H,0 PUT STARTING ADDRESS IN H,L.
2F07 DB BE LOOP IN CASC READ STATUS.
2F09 E6 10 ANI 10H CLEAR ALL BUT BIT 4.
2FOB C2 07 2F JNZ LOOP WAIT IN LOOP UNTIL READY.
2FOE DB 6F IN CASD READ A DATA BYTE.
2F10 FB EI SIGNAL OPERATOR.
2F11 77 MOV M,A PUT DATA INTO MEMORY.
2F12 23 INX H INCREMENT MEMORY POINTER.
2F12 C3 07 2F

CASC

CASD

JMP

EQU

EQU

END

LOOP

6EH

6FH

REPEAT THE ABOVE OPERATION.

CASSETTE STATUS PORT.

CASSETTE DATA PORT.

NOTE: IF YOU HAVE AN IMSAI OR ALTAIR WITH AN OUTPUT PORT ON THE FRONT

PANEL (8 LED's), YOU CAN USE THE BOOTSTRAP PROGRAM FOR TROUBLE-
SHOOTING THE INPUT SECTION WITH THE FOLLOWING MODIFICATION:

AT INSTEAD OF SUBSTITUTE
2F10 El (FB) CMA (2F)
2F11 MOV M,A (77) OUT (D3)
2F12 INX H (23) LEDS (FF)

Fig. 7.9 For minimal tape loading efforts, this simple bootstrap routine permits data to be loaded into the computer via the Tarbell
interface.
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gram shown in Fig. 7.9 (p. 77) loads data starting at ad-
dress 0000 and keeps on going. There is no count of bytes
and no error checks. It is assembled to run at address
2F00 (hex) but can be reassembled to run anywhere pro-
vided that it does not load data over itself. Use the sec-
onds indicator on your watch to determine how long to
wait until stopping the program. Allow about 45 seconds
to load an 8-kbyte block of data.

Sometimes, programs must be written for a particu-
lar interface. These programs are often referred to as
drivers and are usually attached or linked to other pro-
grams, such as the cassette input or output routines.
The Tarbell interface is a synchronous device, which
means that data or programs are most efficiently written
as a contiguous block, rather than as separate bytes. A
few basic recommendations for writing software include:

1. The first byte must be a start byte-any byte
except 00, FF, or E6.

2. The second byte must be a sync byte-E6.
3. The output software must be able to deliver

bytes to the interface as fast as the interface can accept
them, which is 187 bytes per second at the standard
speed. This means that any loop that the program goes
through (between bytes) must last no more than 5.3
ms. (On the 8080 this means about 5300 instruction
cycles between bytes of data-normally not a problem.)

4. The input software must also have a similar con-
straint-incoming data should be accepted as fast as it is
being readied by the interface.

There are times, though, when data cannot be pro-
vided or accepted fast enough by the software. One ex-
ample of this is generated data from a program running
in BASIC. To solve the speed problem, data are read
in or sent out a line at a time, with nulls between. How-
ever, there are other methods to solve the problem-
you can send each byte as a separate block with its
start and sync bytes or you can have the bytes accumu-
late in a buffer area of the computer memory and start
and-stop the cassette recorder under computer control
when it's time to empty the buffer.

Some other things to consider when you write pro-
grams and store them on cassettes include:

1. Since tape is an imperfect recording medium it
is best to include an error-checking scheme such as
checksums to indicate if the tape loaded properly. How-
ever, there are hundreds of error-checking routines and
each provides slightly different protection against a
bad bit or two.

2. Consider including an identifier, such as a name,
along with the file on the cassette. This makes accessing
the file much simpler in some cases.

3. Try to include the length of the file at the begin-
ning of the tape. A one- or two-byte header to indicate
file or block size is sometimes used.

4. Another code in the header could classify the
type of software on the tape, the particular format, or
the speed of recording. One byte should be sufficient.

Control the Recorder with the Computer

So far, the tape recorder has to be turned on and
off manually every time you want to read or write data.
By using the microphone switch available on most
small recorders you can start or stop the recorder by
first building an interface to the computer that can
handle the current of the tape recorder's motor. The
ability to control the recorder is important if the amount
of data on tape is too much for the computer's memory
or if data generated by the computer only comes in
blocks with large time separations between the blocks.
And, in some cases , more than one tape recorder can
be controlled, thus permitting you to read from one and
write to another in order to modify, assemble, and store
programs all at the same time.

The simple circuit shown in Fig. 7.10a along with the
software assembly listings shown in Fig. 7.1Ob can con-
trol the recorder. In the START routine there is a DE-
LAY subroutine requested (but not shown) since there
must be a delay of about one to two seconds for the
tape to get up to speed from a dead stop before data can
be read or recorded. The delay depends on the type of
recorder used and should be longer before a write oper-
ation than before a read. A module that allows the
control of up to four cassette recorders with the Tarbell
interface is available from RO-CHE Systems, Van Nuys,
California.

The ordinary cassette recorder is still limited by the
mechanical controls for record and playback. To get
more computer control, the Phi Decks, made by Triple
I Corp., for example, can eliminate almost all manual
intervention with the use of a control board that con-
nects to the Tarbell interface and the computer's bus.
The basic tape transport without any support electron-
ics has three motors, a read/write head, a beginning/
end of tape sensor, and an engage/ disengage control.
There are five basic transports available:

1. Model 1: Fixed-speed unidirectional-play deck
with play speeds of I to 6 ips (with pulley change). Oper-

ation is from a 12 V dc, 900 mA supply.
2. Model 2: Variable-speed, bidirectional play with

tape speeds of 0.5 to 10 ips (voltage controllable). Oper-
ation is from 12 V dc, 900 mA supply.

3. Model 3: Variable-speed bidirectional play with
tape speeds of 0.4 to 20 ips (voltage controllable). Start
and stop speeds are less than 100 ms. Operation requires
five supplies: +18 dc at 25 mA, -18 V at 120 mA, 11 V
at 100 mA, +7 dc at 500 mA, and 5 V at 400 mA.

4. Model 4: Fixed-speed, unidirectional-play ac
motor driven unit with speed regulation of 0.2% and
tape speeds of 15/16, 1'/s, 33/4, 5, 6, 7, and 8 ips.

5. Model 5: Fixed-speed, unidirectional-play ac
motor driven unit with speed regulation of 0.2% and tape

speeds of 7.5, 10, 12, 14, and 16 ips.

Any of these decks would make a nice addition to a
computer system but the Model 3 offers the most flex-
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I1-8
(6P CONTROL
OUT 81T 0)

TO REMOTE
INPUT ON
CASSETTE

+5 VOLTS
(ON BOARD)

(A)

IN750

START LDA

ORI

CTLS

01

GET CONTROL STATUS BYTE.

SET BIT 0 =ONE.

STA
OUT
CALL
RET

CTLS
CASC
DELAY

UPDATE CONTROL STATUS BYTE.
START THE TAPE.
WAIT FOR TAPE TO GET UP TO
RETURN (NEXT DO YOUR I/O).

SPEED.

STOP LDA
AND
STA
OUT
RET

CTLS
OFEH
CTLS
CASC

GET CONTROL STATUS BYTE.
SET BIT 0 TO ZERO.
UPDATE CONTROL STATUS BYTE.
STOP THE TAPE.
RETURN FROM I/O ROUTINE.

CTLS DB 0 CONTROL STATUS BYTE.
CASC EQU 6EH CASSETTE CONTROL PORT. (B)
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Fig. 7.10 This simple circuit permits the Tarbell interface to start and stop a cassette tape recorder (a). The software necessary to con-
trol the cassette recorder is a simple 13-line assembly code routine (b).

ibility and highest speed although the Model 2 runs a
close second. Just the bare deck can be purchased for
about $170 and $124, respectively. The motion control
electronics package costs $119 more. And additional
read/write electronics boards add another $120 to the
package cost. One option that should be included is the
solenoid head engage feature so the computer can con-
trol all operation except for tape insertion or removal.

Interfacing the Phi Deck to the Tarbell board is
relatively simple, as the circuit in Fig. 7.11a shows. Basi-
cally, the read/write head is fed by several gates with
the digital data to be recorded on tape. To recover the
data the output of the head is fed into an amplifier, which
in turn feeds the signal to the Tarbell board. To control
the drive a one-of-ten decoder uses control bits from the
Tarbell interface to provide the four basic deck control
functions-RUN, STOP, FAST FORWARD, and
REWIND. Four return lines from the motion board
provide status information to the Tarbell board. The
simple program shown in Fig. 7.11 b can be used to get
the deck working with the interface. To use the program,
flip sense switch 2 on the computer's front panel up
momentarily to pulse the control line. Sense switch 3
should be up for read and down for write. Data transfer
rates of over 1000 bytes per second are possible.

Consider the Kansas City Standard
Even though the KC Standard tape interface is slow

in comparison to the Tarbell interface, it is extremely

popular and there are many available sources of pre-
recorded programs. Basically, the KC Standard uses
frequency-shift modulation at a data rate of 300 baud.
The technique allows for long- and short-term tape
speed variations, bandwidth limitations, and tape mis-
alignment. A recorded character consists of a space as
a start bit, eight data bits, and two or more marks as
stop bits. The interval between characters consists of an
unspecified amount of time at the logic ONE frequency
(2400 Hz). The eight data bits are organized least-sig-
nificant bit first, most-significant bit last, and optionally
followed by a parity bit for a total of eight bits. Data
are organized in blocks of arbitrary length preceded by
a minimum of five seconds of marks. To avoid errors due
to splices and tape damage common at the beginning
of the tape, the first recorded data block will occur no
sooner than 30 seconds from the beginning of a clear
leader.

Basically, the recording and data recovery methods
used in the Tarbell interface are the same. The only dif-
ferences are the frequencies used to represent ONES
and ZEROS and the format of data as the bytes are
stored on the tape. Pertec offers an interface for its
Altair computer system. The interface, known as the 88-
ACR, uses a serial interface board as described in Chap-
ter 8 and a "piggyback" circuit that transforms the digi-
tal data into signals that can be recorded on an ordinary
tape recorder (Fig. 7.12). When no signal is present
the output of the 88-ACR is a constant-amplitude 2.4
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FROM
CTL BIT I JI-7
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STATUS
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BITS TO
STA BIT I JI-2

INTERFACE STA BIT 2
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' M38I 7 7 JI-15+5V

B4
_

100 k

100 k

18011
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INTERFACE

- J7-9 GROUND

• J7-8 RUN

- J7-7 STOP

► J7_6 FAST
FORWARD

- J7-5 REWIND

CONTROL
LINES TO
PHI-DECK

J7-13 REWIND

J7-14 FAST FORWARD

J7-15 STOP

J7-16 RUN

The simple program below is handy for experimenting. Flip sense switch 2 up momentarily to pulse the control line.
Control Table

LOOP IN FFH DB FF Read Sense Switches. st s0 function

OUT 6EH D3 6E Write to Control Port. 0 0 RUN
IN 6EH DB 6E Read Status Lines. 0 1 STOP
OUT FFH D3 FF Write To Display Lights. 1 0 FF
JMP LOOP C3 00 00 Do it all over again. 1 1 REW

Sense switch 3 should be up for read, down for write.

NOTE: A PHI-DECK kit, which includes a board with control and read/write electronics, is available from MECA, 7344 Wamego Trail,

Yucca Valley, Calif. 92284. MECA provides information about connecting their unit to the Tarbell Cassette Interface.

(B)

Fig.7.11 The Tarbell interface can also be used to control a more complex tape unit such as the PHI-DECK from Triple I with the cir-
cuitry shown here (a). This simple program can provide minimal operating interface control for a digital tape deck (b).

kHz sinewave (logic ONES), and when the digital input
begins changing, indicating ONES and ZEROS, the out-
put frequency drops to 1.85 kHz to indicate a ZERO.

The piggyback board used on the 88-ACR con-
tains the modulator/ demodulator circuits that convert
digital data into tones and vice versa. When an output
program is running, parallel data are fed into the 88-
ACR and are transformed to serial data by the SIO por-
tion of the 88-ACR. The serial digital data stream is
then fed out of the main board to the "piggyback"
board. The digital data stream is converted into square-
wave tone signals that are next fed to the buffer signal
conditioner where they are changed from TTL levels to a
100 mV peak-to-peak sawtooth wave suitable for the mi-
crophone input of the recorder. From the conditioner,
the signal is fed to the output cable and to the tape

recorder.
When a tape is being played to load data, the audio

output of the recorder is fed via shielded cable into the

88-ACR's audio input (signal levels should be 35 mV to
3.5 V rms for proper operation). The audio signal is fil-
tered and then fed to the demodulator and into the car-
rier detector circuit. The demodulator compares the fre-
quency of the incoming signal with the frequency of
the internal oscillator, which is set at the halfway mark.
When the input frequency is over the halfway point the
output is a logic 1 and when the input frequency is under
the halfway point the output is a logic 0. The demodu-
lator output is then adjusted to TTL levels, which are
then fed from the piggyback board to the input of the

main board.
The 88-ACR has several jumper areas that must be

set up before any operations begin. As with the I/O
boards described in earlier chapters, the board address
must be set by strapping gate inputs. The eight lower-
order address bus lines are fed to the select logic. De-
pending on the state of AO, either the control or data
channel will be enabled (AO LOW enables the control
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(B)

Fig. 7.12 The 88-ACR tape interface developed by Pertec consists of two boards (a). One board performs the serial-to-parallel and
parallel-to-serial conversion, and the other board performs the digital to frequency shift keying (FSK) to digital conversion (b). (Cour-
tesy Pertec)

channel, A0 HIGH enables the data channel). Of the
two device addresses on the board, the control channel
is always an even number and the data channel is always
an odd number.

Serving a dual purpose, the control channel enables/
disables the hardware interrupt capability for the 1/0
device, and it tests the status I/O device. After an IN
command is executed with the control channel address,
SINP goes HIGH, which, in turn, enables the DATA
IN lines.

The SWE (STATUS WORD ENABLE) line is al-
ways enabled except when inputting data; this results
in the status being inputted to the DATA IN lines and
into the CPU's accumulator. The eight data bits are
defined in Table 7.1. When an OUT instruction is exe-
cuted with the control channel address, data bits 0 and
1 are gated to the I/O interrupt flip-flops. (For exam-
ple, to enable the input device and disable the output
device interrupts, load the accumulator with xxxxxx01
and then execute an OUT instruction with the control
channel address.) The data channel transfers the data

between the device and the CPU. As soon as the CPU
puts the data from the accumulator onto the data out bus,
the PWR line goes LOW, causing the parallel data on
the bus to be loaded and then transmitted serially. The
UART, similar in function to the unit described in the
serial interface in the previous chapter, does all the
serial to parallel and parallel to serial conversion. Both
the receive and transmit sections of the UART require
a clock input that is 16 times the baud rate. Baud rates
of 110, 150, 300, 600, 1200, 2400, 4800, 9600, and 19,200
can be set by jumping pins to 5 V or ground according
to Table 7.2. Any other frequency can be determined
by the following formula:

Present frequency

= 4100 - (period of output frequency in µs),

0.5 µs

where the maximum frequency is 400 kHz and the maxi-
mum rate is 25,000 baud.
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Logic Zero

Table 7.1 Status Word Bit Definitions for the 88-ACR from Pertec

Data
Bit

7 Output device ready (Emit-
ter buffer empty). Also
causes a hardware inter-
rupt to occur if the in-
terrupt is enabled.

6 Not used

5 Not used

4

3

2

1 Not used

0 Input device ready. Data
are available for compu-
ter to input

The S-100 Bus Handbook

Logic One

Not ready

Not used

Data overflow (a new word
of data has been received
before the previous word
was inputed to the
accumulator).

Framing error (data word
has no valid stop bit)

Parity error ( received parity
does not agree with
selected parity).

Not ready

Table 7 .2 Baud Rate Jumper Selection for the 88-ACR

Baud

Rate

110

150

300

600

1200

2400

4800

9600

19200

Preset Count

11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 1 0 1 0 0
1 1 0 0 1 1 . 0 0 0 0 1 1
1 1 1 0 0 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 0 1 0 0
1 1 1 1 1 0 0 1 1 1 0 0
1 1 1 1 1 1 0 1 0 0 0 0
1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0

Table 7.3 Set -up Chart for Stop , Parity , and Data Word Size on

the 88-ACR

Stop bits: NSB to GND = 1 stop bit
NSB to +V = 2 stop bits

Parity : NPB and POE to GND = odd parity
NPB to GND and POE to +V = even parity
NPB to +V and POE to either = no parity

Data bits/char: NDB1 and NDB2 to GND = 5 bits/char
NDB1 to +V and NDB2 to GND = 6 bits/char
NDB1 to GND and NDB2 to +V = 7 bits/char
NDB1 and NDB2 to +V = 8 bits/char

Also included in the board is a hardware interrupt
capability that can be jumper selected on three pads,
OUT, IN, and BH . These represent the output device,
the input devices, or both devices , respectively. Any of

the pads can be jumpered to the VI pads (numbered 0
to 7). The VI pads represent the vector interrupt lines
and the pads 0 to 7 correspond to the eight priority lev-
els, with 0 being the lowest and 7 the highest priority.
These interrupt levels are intended to be used with the
88-VI interrupt controller board . If the board is not
used in the system , the processor has an input interrupt
line that can be controlled by the INT pad on the 88-
ACR. When this pad is used , one level of interrupt to
the processor is available , causing the CPU to immedi-
ately jump to location 70 octal (38 hex), and begin exe-
cution . The interrupt service routine can then be stored
in locations 70 to 77 octal (38 to 3F hex).

Other jumper connections must be made to deter-
mine the number of stop bits , parity (even, odd, none),
the number of bits per character (adjustable from 5 to
8), and just some interconnect that could not be done
via the printed wiring on the board . To set the stop bits,
parity , and data bits, jumpers must be inserted according
to Table 7.3. For a typical system set-up the 88-ACR
should be jumpered for address 006 (octal), the baud
rate set for 300, and the UART set for eight data bits, one
stop-bit, and no parity bit. (Jumpers POE, NDBL,
NDBZ , and NPB should go to +V and NSB should go on
GND.) To set the address , jumpers must be set accord-
ing to Table 7.4.

To actually use the 88-ACR, the computer must
have instructions in its memory that tell it how to trans-
fer the data back and forth , from memory to tape or
vice versa . Assuming the basic control programs are in
the computer's memory and you want to store data on
the tape, the RECORD OUT line of the 88-ACR must
be connected to the microphone input of the recorder.
With the computer in the stopped condition , but set
to output the data, place the recorder in the RECORD
mode. Allow the recorder to run for at least 10 seconds
to provide a sufficient leader before hitting the com-
puter's RUN switch . If you have a tape counter built
into the recorder, start recording at 000 , hit the RUN
switch at 015 , and carefully note the start and stop
counts. To input data connect the earphone jack of the
tape recorder to the PLAY-IN line of the 88-ACR.
Again , the computer should be in the STOP mode but
preset so only the RUN switch must be hit . Start the
tape at the beginning and then hit the RUN switch
when the tape counter indicates the program is loaded.

The test tape used to align the 88-ACR can be made
using the 88-ACR in an output mode . Listed in Table
7.5, the program shown records a test byte (125) until
the program is manually stopped . It is written using I/ O
address 006 for status and address 007 for data . To play
back the test program once it is recorded on the tape,
another program must be used (Table 7.6). However,
to actually perform everyday I/O operations some short
programs that can be used to output or load the main
program are shown in Table 7.7.



Table 7 .4 Address Set-up Selection for the 88-ACR

Add
Connections

Add
Connections

ress ress
(Octal) 17 16 15 14 13 12 11 (Octal) 17 16 15 14 13 12 11

000 A7 A6 A5 A4 A3 A2 Al 200 A7 A6 A5 A4 A3 A2 Al
002 Al A6 A5 A4 A3 A2 Al 202 A7 A6 AS A4 A3 A2 Al
004 A7 A6 A5 A4 A3 A2 Al 204 A7 Al A5 A4 A3 A2 Al
006 A7 Al Al A4 Al A2 Al 206 A7 Al Al A4 Al A2 Al
010 A7 A6 AS A4 A3 A2 Al 210 A7 A6 A5 A4 A3 A2 Al
012 A7 Al Al A4 A3 Al Al 212 A7 Al Al A4 A3 Al Al
014 A7 Al Al A4 A3 A2 Al 214 A7 Al A5 A4 A3 A2 Al
016 A7 Al Al A4 A3 A2 Al 216 A7 Al Al A4 A3 A2 Al
020 A7 A6 A5 A4 A3 A2 Al 220 A7 A6 AS A4 A3 A2 Al
022 A7 Al Al A4 Al Al Al 222 A7 Al A5 A4 A3 Al Al
024 Al Al Al A4 Al A2 Al 224 A7 Al Al A4 A3 A2 Al
026 Al Al Al A4 Al A2 Al 226 A7 A6 A5 A4 A3 A2 Al
030 A7 A6 A5 A4 A3 A2 Al 230 A7 A6 A5 A4 A3 A2 Al
032 Al A6 Al A4 A3 Al Al 232 A7 Al A5 A4 A3 Al Al
034 Al Al Al A4 A3 A2 Al 234 A7 Al Al A4 A3 A2 Al
036 Al Al Al A4 A3 A2 Al 236 A7 A6 Al A4 A3 A2 Al
040 A7 A6 A5 A4 A3 A2 Al 240 A7 A6 A5 A4 A3 A2 Al
042 Al Al A5 A4 Al Al Al 242 A7 Al A5 A4 Al Al Al
044 Al Al A5 A4 Al A2 Al 244 A7 Al A5 A4 A3 A2 Al
046 Al A6 A5 A4 Al A2 Al 246 A7 Al A5 A4 Al A2 Al
050 Al A6 AS A4 A3 A2 Al 250 A7 A6 A5 A4 A3 Al Al
052 Al Al A5 A4 A3 Al Al 252 A7 Al A5 A4 A3 A2 Al
054 Al Al A5 A4 A3 A2 Al 254 A7 Al AS A4 A3 A2 Al
056 A7 A6 A5 A4 A3 A2 Al 256 A7 Al AS A4 A3 A2 Al
060 Al A6 AS A4 Al A2 Al 260 A7 Al A5 A4 Al Al Al
062 Al Al AS A4 Al Al Al 262 A7 Al AS A4 Al Al Al
064 Al Al AS A4 Al A2 Al 264 A7 Al AS A4 Al A2 Al
066 Al Al AS A4 Al A2 Al 266 A7 Al AS A4 Al A2 Al
070 A7 A6 AS A4 A3 Al Al 270 A7 Al A5 A4 A3 Al Al
072 Al Al AS A4 A3 Al Al 272 A7 Al AS A4 A3 A2 Al
074 Al Al AS A4 A3 A2 Al 274 A7 Al A5 A4 A3 A2 Al
076 Al Al A5 A4 A3 A2 Al 276 A7 Al AS A4 A3 A2 Al
100 A7 A6 A5 A4 A3 A2 Al 300 A7 A6 AS A4 A3 A2 Al
102 Al A6 Al A4 Al Al Al 302 A7 A6 Al A4 Al Al Al
104 A7 A6 A5 A4 Al A2 Al 304 A7 A6 Al A4 Al A2 Al
106 Al A6 A5 A4 Al A2 Al 306 A7 A6 Al A4 Al A2 Al
110 Al A6 Al A4 A3 Al Al 310 A7 A6 Al A4 Al Al Al
112 Al A6 Al A4 A3 Al Al 312 A7 A6 Al A4 A3 Al Al
114 A7 A6 A5 A4 A3 A2 Al 314 A7 A6 Al A4 A3 A2 Al
116 Al A6 Al A4 A3 A2 Al 316 A7 A6 Al A4 A3 A2 Al
120 Al A6 Al A4 Al Al Al 320 A7 A6 Al A4 Al Al Al
122 A7 A6 A5 A4 Al Al Al 322 A7 A6 Al A4 Al Al Al
124 A7 A6 A5 A4 Al A2 Al 324 A7 A6 Al A4 Al A2 Al
126 Al A6 Al A4 Al A2 Al 326 A7 A6 Al A4 Al A2 Al
130 A7 A6 A5 A4 A3 Al Al 330 A7 A6 Al A4 A3 Al Al
132 Al A6 Al A4 A3 Al Al 332 A7 A6 Al A4 A3 Al Al
134 Al A6 Al A4 A3 A2 Al 334 A7 A6 Al A4 A3 A2 Al
136 A7 A6 A5 A4 A3 A2 Al 336 A7 A6 Al A4 A3 A2 Al
140 A7 A6 AS A4 Al Al Al 340 A7 A6 AS A4 Al Al Al
142 Al A6 AS A4 Al Al Al 342 A7 A6 A5 A4 Al Al Al
144 A7 A6 A5 A4 Al A2 Al 344 A7 A6 A5 A4 Al A2 Al
146 A7 A6 A5 A4 Al A2 Al 346 A7 A6 AS A4 Al A2 Al
150 A7 A6 A5 A4 A3 Al Al 350 A7 A6 A5 A4 A3 Al Al
152 Al A6 AS A4 A3 Al Al 352 A7 A6 AS A4 A3 Al Al
154 Al A6 AS A4 A3 A2 Al 354 A7 A6 A5 A4 A3 A2 Al
156 A7 A6 AS A4 A3 A2 Al 356 A7 A6 AS A4 A3 A2 Al
160 A7 A6 AS A4 Al Al Al 360 A7 A6 A5 A4 Al Al Al
162 Al A6 A5 A4 Al Al Al 362 A7 A6 AS A4 Al Al Al
164 A7 A6 A5 A4 Al A2 Al 364 A7 A6 AS A4 Al A2 Al
166 A7 A6 AS A4 Al A2 Al 366 A7 A6 AS A4 Al A2 Al
170 A7 A6 AS A4 A3 Al Al 370 A7 A6 AS A4 A3 Al Al
172 Al A6 A5 A4 A3 Al Al 372 A7 A6 A5 A4 A3 Al Al
174 Al A6 AS A4 A3 A2 Al 374 A7 A6 A5 A4 A3 A2 Al
176 Al A6 A5 A4 A3 A2 Al 376 A7 A6 AS A4 A3 A2 Al
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Table 7.5 Program Listing that Makes the 88-ACR Record a
Test Byte on the Tape

The following is a listing of the output program used to write
test data onto tape. This will be used for the alignment of the 88-
ACR Demodulator. The program may be used with any memory
size, 256 words or larger.

This program will record the test byte (125) until the program
is manually stopped. The program is written using I/O address 6 for
status and I/O address 7 for data. If your board address has been
wired differently, change the program accordingly.

Address

Location

(octal)

Octal
Code Mnemonic Description

200 333 IN Input

201 006 - I/O Port Status Address
202 007 RLC Rotate accumulator left
203 332 JC Jump if carry
204 200 - Low \
205 000 -

High / Address jumped to if zero

206 076 MVI
accumulator

Move immediate to A
207 125 - TEST BYTE

210 323 OUT Output
211 007 - I/O Port Data Address
212 303 JMP Jump unconditional
213 200 - Low \
214 000 -

High /Starting address of routine

Table 7.6 Program that Permits the 88-ACR to Retrieve Data

from a Cassette Tape

The following is a listing of the program for playback of the
Output Test Program. This program will also be used for the align-
ment of the 88-ACR Demodulator. It is written using the same I/O
port addresses as the other program and should be changed accord-

ingly if necessary.

Address
Location
(octal)

Octal
Code Mnemonic Description

000 333 IN Input

001 006 - I/O Port Status Address

002 017 ARC Rotate accumulator right

003 332 JC Jump if carry

004 000 - Low \

005 000 -
High / Address jumped to if zero

006 333 IN

accumulator
Input

007 007 - I/O Port Data Address

010 356 XRI Exclusive Or Immediate with A

011 125 - Exclusive Or Test Word

012 312 JZ Jump on zero

013 300 - Low \

014 000 -
High/Address jumped to if zero

015 303 JMP

accumulator (Hi Addr.
Test Prog.)

Jump unconditional
016 000 - Low \ Address jumped to if zero
017 000 -

High / accumulator

300 257 XRA Exclusive Or register with A

301 062 STA Store A direct

302 376 -
Low \ First address to be zeroed

303 000 - High/ out

Address
Location
(octal)

Octal
Code Mnemonic Description

304 062 STA Store A direct
305 377 - Low \
306 000 -

High / Second address to be

307 072 LDA
zeroed out

Load A direct
310 376 - Low \
311 000 -

High Address of data for above

312 306 ADI Add immediate to A

313 001 - Data to be added
314 062 STA Store A direct

315 376 -
Low \ Address for above to be

316 000 -
High / stored

317 322 JNC Jump on no carry
320 337 - Low \

321 000 -
High /Address to be jumped to

322 072 LDA
for above

Load A direct

323 377 -
Low Address of data for above

324 000 - High

325 306 ADI Add immediate to A

326 001 - Data to be added

327 062 STA Store A direct

330 377 -
Low Address for above to be

331 000 -
High stored

332 356 XRI Exclusive Or immediate with A

333 006 - Data to be Ex-Ored
334 312 JZ Jump on zero

335 000 - Low \

336 000 -
High /Address jumped to if zero

337 333 IN

accumulator
Input

340 006 - I/O Port Status Address

341 017 RRC Rotate accumulator right

342 332 JC Jump if carry

343 307 -
Low \ Address jumped to if zero

344 000 - High/

345 333 IN

accumulator
Input

346 007 - I/O Port Data Address

347 356 XRI Exclusive Or immediate with A

350 125 - Data to be Ex-Ored (Test Byte)

351 312 JZ Jump on zero

352 300 - Low \

353 000 -
High /Address jumped to if zero

354 303 JMP

accumulator
Jump unconditional

355 000 -
Low ) Jump to this address if A

356 000 - High
is not zero

The output program specifies the start address of
the data and the ending address, then a test byte is
written (000 in this case) followed by data output. The
last portion of the program tests to see if the program
has transmitted the last byte of data. If it has, the pro-
gram jumps to the last position in memory, which can
be observed by a change in the address lights on the
front panel. If the program has not outputted the last
byte, the H and L registers of the CPU are incremented
by one and the program outputs the next byte. Intended
to run in the upper portion of a 4k memory, the program
has a starting address of 017 000 (octal). When record-
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Table 7.7 Normal I /O Routines for the 88-ACR Interface

Write Program ( 38 bytes)

Writing data on tape through the 88-ACR is accomplished by
first specifying the start address of data and the end address of data.
Then a test byte (000 in this program) is written, followed by data
output. The last portion of the program tests to see if the program
has transmitted the last byte of data. If it has, the program jumps to
the last positions in memory, and is observed by a change in the ad-
dress lights on the front panel. If the program has not outputted the
last data byte, the H & L registers are incremented by 1 and the pro-
gram outputs the next byte. This program is placed in the upper
portion of 4K memory with a starting address of 017,000. The lo-
cation may be changed, but be sure to change all jump addresses ac-
cordingly. After recording data that include program information,

write down the start and end address on the tape cartridge along
with the name and test byte of the program for identification.

When recording data at the beginning of a cassette tape, record
at least 15 seconds of steady tone before running the write program
(to get past the plastic leader and wrinkles in the beginning of the
tape). Also, if recording more than one batch of data, leave at least
5 seconds of steady tone between batches. This program is written
for 88-ACR addresses of 6 and 7.

Tag Mnemonic Address Octal Code Explanation

LXI 017,000 041 Load immediate
H & L register
pair

1 xxx Low starting
address of

2 High data to be

written
LXI 3 001 Load immediate

B & C register

pair

4 xxx Low end address of
5 xxx High data to be

written
MVI 6 076 Move immediate to

accumulator
7 000 Test byte to be

written at
beginning

OUT 017,010 323 Output data from
accumulator

11 007 Data channel No. of
88-ACR

Test IN 12 333 Input data to
accumulator

13 006 Status channel No. of
88-ACR

RLC 14 007 Rotate accumulator
left, test for D7
true

JC 15 332 Jump if carry (D7
not true)

16 012
To "TEST"

17 017

MOV 017,020 176 Move contents of

memory speci-

fied by H & L

register to

accumulator
OUT 21 323 Output data from

accumulator
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Tag Mnemonic Address Octal Code Explanation

22 007 Data channel No. of
88-ACR

MOV 23 175 Move contents of
L register to
accumulator

CMP 24 271 Compare accumula-
tor vs B register

JNZ 25 302 Jump if not zero
(L * B)

26 040
To "NEXT"

27 017

MOV 017,030 174 Move contents of H
register to
accumulator

CMP 31 270 Compare accumula-
tor vs C register

JNZ 32 302 Jump if not zero
(H#C)

33 040
To "NEXT"

34 017
JMP 35 303 Jump (if L = B and

(H = C)
36 375

To "END"
37 017

NEXT INX 017,040 043 Increment register
pair H & L

JMP 1 303 Jump
2 012 To "TEST"
3 017

END JMP 017,375 303 Jump (loop to self)
376 375

To "END"
377 017

Read Program ( 48 bytes)

As in the write program, start and end addresses of incoming
data are specified first. Next, the program looks for the test byte
(000 in this program). Once the test byte is detected, the program
inputs data and stores them in memory as specified by the H & L
registers. The next portion of the program tests to see if the end
memory address has been filled. If it has, the program jumps to the
last positions in memory, and is observed by a change in the address
lights on the front panel. If it is not the end, then the program in-
crements H & L by 1 and jumps back to input another data byte.
This program is placed in the upper portion of 4K of memory with a
starting address of 017,000. The location may be changed, but be
sure to change all jump addresses accordingly. When reading data
back in, the tape and program should be started a few seconds be-
fore the start of data.

Tag Mnemonic Address Octal Code Explanation

LXI 017,000 041 Load immediate
H & L register
pair

1 xxx Low starting
address of

2 xxx High data to be
read

LXI 3 001 Load immediate
B&C register
pair

4 xxx Low end address
of
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Table 7 .7 (cont 'd) Normal I /O Routines for the 88-ACR Interface

Tag Mnemonic Address Octal Code Explanation

5 xxx High data to be
read

TSTBT IN 6 333 Input data to
accumulator

7 006 Status channel # of
88-ACR

RRC 017 ,010 017 Rotate accumulator
right ( test Do
true)

JC 11 332 Jump if carry (Do
not true)

12 006
To "TSTBT"

13 017

IN 14 000 Input data to
accumulator

15 007 Data channel No.
of 88-ACR

CPI 16 376 Compare immediate
with test byte
vs accumulator

17 000 Test byte

JNZ 017 ,020 302 Jump if not zero
(test byte
input byte)

21 006
To "TSTBT"

22 017

TEST IN 23 333 Input data to
accumulator

24 006 Status channel #
of 88-ACR

RRC 25 017 Rotate accumulator
right (test DO
true)

JC 26 332 Jump if carry (DO
not true)

27 023
To "TEST"

017,030 017

DATA IN 31 333 Input data to
accumulator

32 007 Data channel # of
88-ACR

MOV 34 175 Move contents of L
register to
accumulator

CMP 35 271 Compare accumula-
tor vs B register

JNZ 36 302 Jump if not zero
(L 0 B)

37 051
To "NEXT"

017,040 017

MOV 41 174 Move contents of H
register to
accumulator

CMP 42 270 Compare accumula-
tor vs C register

JNZ 43 302 Jump if not zero
(H * C)

44 051 To "NEXT"
45 017

JMP 46 303 Jump ( if L = B and
H = C)

47 375
To "END"

017,050 017

NEXT INX 51 043 Increment H & L
register pair

Tag Mnemonic Address Octal Code Explanation

JMP 52 303 Jump

53 023
To "TEST"

54 017

END JMP 017 ,375 303 Jump ( loop to self)

376 375
To "END"

377 017

ing data at the beginning of a cassette tape, record at
least 15 seconds of steady tone before starting the pro-
gram, and when recording more than one program on a
tape, leave at least five seconds of steady tone between
batches.

Similarly, the read-data program requires that the
start and end addresses of incoming data be specified.
Next, the read program looks for the test byte (000 for
this example) and once the byte is detected, the program
looks for data and stores the data in memory as speci-
fied by the H and L registers. The next portion of the
program tests to see if the ending address has been
reached; if it has, the program jumps to the last posi-
tions in memory and indicates the abrupt address change
on the front panel. If the program is not fully entered,
the program increments the H and L registers by one
and jumps back to input another data byte. This input
routine is also intended to start at address 017 000 (octal).
Remember, when reading data back in, the tape and pro-
gram should be started a few seconds before the start
of the data.

Get Larger Storage Capability with a Floppy

If the access-time or storage limitations of the cas-
sette drives or tape recorder rule them out as a viable
medium to record and retrieve data, your next step up
must be to one of the many floppy-disk drives available
from about 20 manufacturers. There are four basic types
of floppy-disk drives-the mini floppy and the dual-
sided mini floppy, which both use a 5 in. diameter flex-

ible disk as the storage media; and the full floppy and
dual-sided full floppy, which both use an 8 in. diameter
medium. Developed to reduce the space and cost re-
quirement in small systems, the mini floppy (Fig. 7.13)
has become a very popular medium due to the low cost
of the drive and the system flexibility it offers. For in-
stance, in kit form several companies offer single or
dual drive systems that cost well under $1500, but when
interfaced to your computer system provide you with
the computing power equivalent to a minicomputer.
If larger storage than the mini floppy is needed, the full
floppy drives can be used in similar multidrive systems.

Storage capacities of the floppy disks depend on
the format used to store the data on the disk. IBM has
developed a format that permits up to 300 kbytes of data
on a full floppy disk and about 100 kbytes on a mini
floppy. Other recording techniques and data formats
are available that provide double the recording density
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Fig.7.13 The mini-floppy disk has become the most
popular low-cost mass storage system for micro-
computers. (Courtesy corn and Pertec)

on the same size disks and thus twice the recording ca-
pacity. The biggest problem with floppy-disk systems
available today is the problem of making the data com-
patible if you remove a disk from a system used with an
Altair, for instance, and use the data in a system with
another computer. And the floppy drives themselves
are not even standardized-each requires a different
set of control signals, a different size cabinet, and dif-
ferent power requirements. Even the software that con-
trols each company's drive must be written just for
your computer, or at least slightly modified depending
upon the way your computer system is organized. The
port addresses must be set as well as the basic control
instructions that load in the basic drive control
instructions.

Of course, the computer must have enough RAM to
hold the basic control instructions and still permit some
workspace for you to develop new programs. Many disk-
operating systems (the program necessary just for the
computer to control the disk drive and format the data)
typically require anywhere from 8 to 24 kbytes. So, not
only will you have to pay more money for a more com-
plicated memory storage system, but you'll have to
boost the computer's RAM space up to at least 24 kbytes
and possibly 32 kbytes to provide ample workspace for
program development. The disk-operating-system pro-

Fig.7.14 Providing control of up to 20 full-sized
floppy disk drives, the 88-DCDD disk controller sys-
tem developed by Pertec consists of two circuit cards
that plug into the computer. (Photo by J. Bierman)
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gram usually resides on the disk itself and a shorter,
bootstrap program stored in ROM or PROM or on
paper tape is first loaded into the computer to provide
minimal control of the disk to load the larger control
programs into the computer.

Floppy-disk operating systems are too complex to
build from scratch unless you have an excellent tech-
nical background and are willing to spend hundreds of
hours getting the system to work. There are, though,
many S-100 bus compatible controllers for various types
of floppy-disk drives. One such system is the 88-DCDD
offered by Pertec for the Altair computer system (Fig.
7.14). It requires a minimum of 24 kbytes of RAM,
preferably 32 kbytes, and consists of a full-sized Pertec
floppy-disk drive with all necessary control electronics.
The control portion of the system consists of two boards
that plug into the computer bus and the basic control
circuitry built into the drive. The manual that describes
how the system operates contains 150 pages too much
to explain here so only a brief summary of how the
drive and controller operate will be given here.
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Fig. 7.15 One of the most complex subsystems used in the computer, the 88-DCDD controller card's functions are split into two halves,
as this block diagram indicates.

The 88-DCDD system capacity is over 300 kbytes of
storage on each disk, with an access time of less than a
second for any data stored on the disk. The boards can
control up to 16 disk drives (Model FD-400 from Per-
tec), thus providing a total storage capacity of almost 5
Mbytes. Connections to the drives from the controller
cards are made in a daisy-chain fashion via 37-pin con-
nectors. The controller boards connect to the first drive
and then a cable from the first drive goes to the second
drive, and so on.

Transferring data serially to and from the disk drive
at 250 kbits/second, the controller converts the serial
data to parallel words and converts the parallel words
to serial data, one word every 32 µs. The controller also
controls all mechanical functions of the drive as well as
presenting status information to the computer. All tim-
ing functions are performed by hardware, thus leaving
the computer free for other tasks.

The disk-operating system is subdivided into several
functional blocks, as shown in Fig. 7.15. Controller
board 1 performs all input functions to the Altair bus
(read data, sector data, status information) as well as
control addressing of all disk drives to the computer
1/0. Board 2 performs all the output functions from
the bus (write data, disk control, disk enable, and drive
selection).

For the computer to use the disk system, the com-
puter must select and enable the disk drive and the con-
troller. The desired disk address (000 to 017, octal) must
first be output on 1/0 channel 010 (octal). The timing
track on the disk, track 0, is found by the computer by
first moving the disk's read/ write head out to the outer-
most track and testing the status. After the appropriate
reference for track 0 is located, the computer moves the
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OUT 012 (WDS)
BOARD 2

OUT 010

OUT 011
I (CD)

head back to the desired track and then loads the read/
write head on the surface of the disk. Software keeps
track of the track the disk head is on once track 0 is lo-
cated. The correct part of the track (sector) is located
by performing an input from the sector channel and
comparing the desired sector number with the sector
count from the controller circuit. After the disk reaches
the correct rotational position (sector), the computer
performs either a read or write operation. When the
computer has finished accessing the disk, the disk control
is cleared, enabling the drive and causing all disk func-
tions to stop. Turning off the drive's power, disconnect-
ing the cable, or opening the disk-drive door also clears
the disk control. Also, when changing access from one
drive to another, the disk control must be cleared before
the new drive is enabled. This ensures that the con-
troller circuits are reset before accessing a new drive.

Assuming you've elected to use a full floppy-disk
drive in a computer system with 32 kbytes of RAM,
two serial I/O ports, two parallel I/O ports, a cassette-
tape interface, and a bootstrap PROM board, you've in-
vested about $3000, not including any type of terminal
or printer. Add another $1000 to $3000 for a terminal
or printer, and you have a complete computer system
minus just one more part-the software. Empty card
slots within the computer can be used to expand the
computer's memory, 1/0 capability, or provide spe-
cialized functions such as speech synthesis, speech rec-
ognition, music generation, process control, analog
interface, etc.-your imagination is the only limit.

The system, once a bootstrap ROM card is used,
becomes very simple to operate-after power is turned
on, the initial address for the desired bootstrap program
must be examined by use of the front-panel switches
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and display, and then the RUN switch can be pressed
to start execution of the bootstrap program. Once the
bootstrap program is loaded, it prompts the user via a
terminal so the next program can be loaded in from the
disk. Of course, dual- or multiple-disk systems provide
even more flexibility-the main operating system pro-
grams are typically stored on one disk drive and all pro-
grams being developed are stored on the other. This
keeps the amount of RAM needed in a large system to
a minimum and can prevent serious data loss due to
power-downs, since data entered and stored on the disk
cannot be easily erased, written over, or lost.

The only missing hardware component for the com-
puter system is some form of hard-copy output-
assuming, of course, you opted not to buy a printing
terminal or you need a faster delivery of the printout
than your terminal can provide. As with picking a ter-
minal, selecting a printer is just as difficult. The three
most basic decisions you'll probably have to make are:

1. Do I want upper or lower case capability? The
ability of a printer to handle upper and lower case
characters is handy for systems that will be used to
produce letters and other printed material. However,
printers with upper and lower case capability tend to
be much more expensive than upper case only units since
they require more internal control circuitry and a more
complex mechanism.

2. How fast a printer do I need? Printer speeds run
the gamut from 10 characters per second to well over
500 characters per second. If you expect to use the
printer to produce lengthy program listings or large
amounts of other types of copy, a high-speed unit is
best, ideally in the 30 to 100 characters per second
range. Printers in this range typically cost $1500 to
$3000. Units in the 30 to 50 cps range are probably the
best choice for the money.

3. What type of interface do I want? Printers, like
almost any other peripheral can be purchased with a wide
variety of interface circuits. The less you pay for a
printer, the less you get-even to the point of a bare
printer mechanism that has absolutely no circuitry.
Typical options include parallel interfaces (seven or
eight data bit lines plus some control lines), serial
interfaces such as RS-232 or TTL levels, or some other
type of interface.

Of course, an overall limiting factor is how much
you can afford to spend for the unit. Sharp shoppers
can even pick up some excellent bargains from various
surplus dealers. There are many different types of
printers available from dozens of dealers, so probably
the easiest way to make a decision about selecting a
unit is to make your own check list and see how many
units can match what you want. Three points have
already been narrowed down-speed, interface, and
character set. Next, the printing method used should be
included-printers can produce characters in three basic
methods and each method has various pros and cons.

89

1. Thermal printers. This type of printer uses tiny
dots to form a character on specially treated heat-
sensitive paper. Much in the way dots are used to form
characters on a CRT screen, the heated dots form a
thermal pattern on the paper, which in turn changes the
color of the paper. Advantages of this method include
almost silent operation combined with fewer moving
parts for higher reliability. However, the disadvantages
include a limited print speed (typically 30 to 50 cps), the
problem of making multiple copies (printouts must be
repeated to make more than one copy) and the use of
the more expensive thermally sensitive paper.

2. Impact printers. The impact printers are prob-
ably the most common variety of printer and are also
the noisiest since small solinoids are used to drive ham-
mers against an inked ribbon that, in turn, hits the
paper and leaves an inked impression. Impact printers
do have the advantage of being able to make multiple
copies when the original is being printed, and they do
not require any special paper. However, they are noisy
and need servicing on regular intervals to replace the
ribbon and make sure the hammers are unjammed.

3. Electrostatic printers. This type of printer is
capable of completely silent operation, much like the
thermal printer. It also has the drawback of not being
able to make multiple copies of a printout and requires
special metalized paper. However, it can deliver a lot of
data in a short amount of time; rates of 100 cps are
not uncommon.

Of course, if you need even faster printing speeds,
there are other types of printers available that use other
techniques to produce printed data. Typical costs of
faster than 100 cps printers range from about $3000 to
over $10,000 each.

Once you've selected the speed of a printer and the
character set, next decide on the interface you will use.
If speed wasn't a critical factor, a 20 mA current loop
or RS-232 serial interface would provide the least
interconnect trouble since only four wires, at the most,
would be needed. However, for simplest interconnec-
tion and highest speed, a parallel interface should be
used. In most parallel interface applications, eight lines
are used to transfer the data, and any number of other
control lines can be connected to control the printer and
computer operation.

Printer Control Signals Are Important

Depending on the type of printer you finally select,
the control signals may differ considerably. For a printer
with a parallel data input, only three basic control
lines are needed in addition to the data lines and a
common ground line. The three lines include a Ready
line, a Start line, and a Busy line. The Ready line is an
output from the printer and signals the computer that
the printer is turned on and is functional. Depending
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on the printer, the signal can be either high or low,
although many printers use a high level to indicate that
power is on. The Start line is an input to the printer and
when brought high or low (depending on the model) by
the computer, it initiates the printer's print sequence.
(This assumes a valid character is present at the printer's
data input.) While the printer is printing, its last basic
control line, the Busy line changes states and outputs
its signal to the computer, telling the computer not to
send another character on the data lines until the Busy
line changes back to the state it was in before the Start
line initiated the printer.

Other control lines are possible-it's just a matter
of how many control lines you want to have going back
and forth. One often available extra line is a control
input to the printer that increments the line (advances
the paper by one line) and brings the printing mechanism
back to the beginning of the new line, thus saving a two
character transmission (carriage return and line feed).

Serial input printers have a more limited control
capability, since all control is via a three-wire interface.
However, the number of connections is vastly reduced
and the interface itself is very standardized, typically
being an RS-232 or teletypewriter 20 mA current loop.



CHAPTER 8

Programming the 8080 CPU in the
S-100 Bus Microcomputer

Before going any further with the use of a micro-
computer system, the software (programs) necessary
for the basic machine and its interfaces have to be devel-
oped. However, before even the basic operating pro-
grams for the computer are developed, you have to
know how to program. But what is programming?

A program is simply a set of instructions that the
computer will obey to perform a specific task, and the
"art" of programming is just the process of putting the
instructions in the desired sequence. As mentioned ear-
lier, the 8080A has 78 basic commands it will obey, and
the Z-80 microprocessor has over 150. Each instruction
causes the processor to perform a specific operation.
But putting the instructions in the right sequence is a
process that must be learned because sometimes thou-
sands of simple instructions make up a program, and
just one instruction in the wrong place or an incorrect
instruction will cause the entire program to go haywire.

Those of you familiar with large computer systems
such as made by IBM, Burroughs, Control Data, and
other companies, know that programming is done in
almost English-like commands. However the micro-
computer, in the form described thus far in the book,
comes with nothing as simple. Programming is done in
its simplest form-ones and zeros entered into the
computer. Each instruction is represented by one or
more 8-bit groups of ones and zeros (one or more bytes)
and must be loaded into the computer's RAM or perma-
nently stored in ROM where it is pulled from memory
when needed. This simple form of programming is called
machine-language programming since the computer is
being told what to do in its own language of ones
and zeros. To some people this is the hardest form of
programming since there is no indication of what each
instruction is unless you know what every binary, octal,
or hexadecimal code represents. And the use of binary,
octal, or hexadecimal can also bring even more confu-
sion since many companies use only one of the three.
For instance, all programs listed in the lmsai manuals
are printed in hexadecimal notation while programs
shown in the Pertec manuals are in octal formats. How-

ever, for the rest of this chapter all programs, unless
specially noted, will appear in hexadecimal format.

To make programs easier to write, each instruction
is represented in an abbreviated "English" form called a
mnemonic. For instance, the 8080A has an instruction
that performs no operation. Its mnemonic is NOP and
is represented by the hexadecimal code 00, the octal code
000, or the binary code 00000000. Another instruction,
HLT, causes the 8080A to stop what its doing (HALT).
The hexadecimal code is 76, the octal code is 166, and
the binary code is 01110110. As you can see, it's much
easier to read or write and understand mnemonics than
it is to read number codes. Mnemonic programming is
called assembly-language programming because after
the mnemonics are put together into proper sequence
(assembled), the numeric codes must be inserted (com-
piled) so that the computer will receive the machine-
language instructions (often referred to as machine
code.)

Even more English-like methods are available to
help you put together a program. Larger systems can use
more English-like statements such as GO TO, A + B =,
LET, etc., with languages such as BASIC or FORTRAN
to represent whole strings of mnemonic instructions
much as in a complex math example where you use letters
to represent numbers. For example, let the numbers 1, 2,
3, and 4 be represented by A, B, C, and D (much in the
same way that mnemonics represent the binary num-
bers). Now, if another letter, say E, is used to repre-
sent the sum of all the other letters, we've gone one step
higher and instead of saying that the sum is I + 2 + 3 + 4,
or A + B + C + D, we say the sum is E. In much the same
way, an English command such as GO TO could repre-
sent a string of several mnemonic or numeric instruc-
tions. The English-like language is often referred to as
a high-level language since, like the letter E, each state-
ment can be broken down into smaller statements. The
most commonly used language is BASIC--in various
forms--since most microcomputers can use it without
burning up much valuable memory space to hold the pro-
gramming system. (There are versions of BASIC that
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can operate with as little as 4096 words of memory space
although many of the versions need at least 8k and
some 16k.)

Start by Flowcharting the Problem

Writing a program for a computer is simple if you
think very logically. If you don't, the best way to develop
a program is to first diagram the problem you want to

DECISION STATEMENT

(A) (B)

Fig. 8.1 To make a flowchart, the diamond-shaped
box (a) is used to represent a decision point and the
rectangular-shaped box (b) represents a statement or
a group of statements that do not involve a decision.
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Fig.8.2 A simplified flowchart of someone's daily
routine.

solve, showing all the major steps the computer should
take to do the job. This process is referred to as devel-
oping the flowchart -a map of how the computer will
perform its job. There are two major symbols used on
flowcharts to distinguish some important operations.
A diamond-shaped box (Fig. 8.1a) indicates that the
processor is making some sort of decision or doing a
comparison. Usually the diamond will have one input
and two outputs---two outputs because the decision is
often in the form of yes or no. The program will perform
one set of tasks if the decision is yes and a different set
of tasks if the decision is no; this is sometimes called a
branch point. The other symbol is just a rectangular
box (Fig. 8.1 b) that represents a cluster of instructions
that don't require the computer to make a decision but
must be performed. By combining these symbols and
some words within the boxes, programs can be
flowcharted.

A typical day in your life can be represented in
flowchart form and would appear very similar to a com-
puter program. For instance, the flowchart shown in
Fig. 8.2 could be someone's daily routine. Note that
right at the beginning of the program there are some
important decision blocks that can drastically alter
the sequence of events. This flowchart is very simple
compared to the actual complexities and number of
jobs to be performed.

Let's go back now to the actual computer system
and go through some extremely simple instructions to
familiarize you with flowcharting and some of the actual
instructions for the 8080A. For the first example, let's
see how the computer would add two numbers together
(Fig. 8.3). As you can see, the process is just a sequence
of rectangular boxes describing each operation. Data
(the numbers to be added) can either be stored in the

LOAD A INTO
ACCUMULATOR

Z
ADDBTO
ACCUMULATOR

Fig.8.3 Simple flowchart for a two number addition
program.
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LDA A 3A 01 00
LHDL B 2A 02 00
ADD M 86
STA C 32 00 00

Note: This assumes that the numbers to
be added are already in A and B.
LHDL is an alternate instruction
to the two MVI instructions
shown in the text.

Fig. 8.4 Mnemonic and machine code listing
simple addition program of Fig. 8.3.

for the

memory or loaded into the processor from an outside
source when needed. Let's look at one possible method
the computer can use to add several numbers. The
sequence of commands shown in Fig. 8.4 assumes that
the numbers to be added (say A and B) are stored in
memory locations 0001 and 0002. Since all mathematic
and logic operations take place in the 8080A's accumu-
lator, the numbers in the memory must be added to the
accumulator.

At this point, there are two different ways to get
the first number into the accumulator. A Load Accumu-
lator Direct (LDA) instruction can be used. This in-
struction tells the computer to use the two bytes follow-
ing the instruction as the low order and high order
address bytes of the information to be loaded in. Thus,
the sequence of commands in assembly language and
machine language would start off with

LDA A or 3A 01 00

The next step in the sequence is to get the number B
added to the accumulator. To do that, an ADD M in-
struction will be used. However, to use an ADD M
instruction requires that the address of the data be
stored in the H and L registers of the 8080A. Thus,
two instructions must be combined first the address
of B must be loaded into the H and L registers by using
two MVI (Move Intermediate) instructions and then the
ADD instruction must be used. This sequence looks like:

MVI L 26 02
MVI H 2E 00
ADD M 86

Now the sum of the two numbers A and B is held in
the accumulator. To store that sum somewhere, say
location 0000 (call it C), another command that stores
the accumulator in the memory (STA) must be used.
Its sequence would be:

STA C 32 00 00

As you can see, programming the 8080A to perform
the simple job of adding two numbers requires five
instructions. However, before looking at more pro-
grams and the instruction set, let's take a look at the
8080A and its registers.

Get to Know the 8080A Programming Model

Inside the 8080A are seven registers called working
registers. They are numbered and referenced by the
numbers 0, 1, 2, 3, 4, 5, and 7 or by the letters B, C, D,
E, H, L, and A (for the accumulator), respectively. In
these registers, all operations take place. Sometimes
these registers are accessed in pairs and are referred
to as register pairs B (B and C), D (D and E), H (H and
L), and PSW (A and a special register that holds various
status flags). Also included in the 8080A are two special
registers called the program counter, PC, and the stack
pointer, SP. The PC is a 16-bit register that is used to
direct the processor to the memory location holding the
next instruction that is to be executed. The SP is also a
16-bit register and it is used by the processor to access a
reserved area of memory called a stack in which data
and addresses are stored and retrieved. Stack operations
are performed by several of the 8080A instructions and
are most often used to handle program subroutines
(programs within programs) and program interrupts.
All seven of the 8-bit registers and both 16-bit registers
are accessible via instructions.

A processor's program contains a sequence of in-
structions, where each instruction performs a simple
operation such as an arithmetic or logic operation, the
movement of a data byte, or a change in instruction exe-
cution sequence. The memory address of the next in-
struction to be executed is held in the PC. Just before
each instruction is executed, the PC is incremented to
the next instruction address. Execution proceeds se-
quentially unless a jump, call, or return instruction
occurs to cause the program counter to be set to a spe-
cific address and then execution proceeds sequentially
starting with the new address.

However, when the processor examines the contents
of a memory byte, it has no way of determining whether
the binary bit pattern represents an instruction or a data
word. Thus, it is important that the program logic tells
the processor whether to expect an instruction or data.
When first turned on and reset, the processor expects
to retrieve an instruction. Every program has a starting
address (the address of the first instruction byte to be
executed) that the machine must be directed to either
via the front-panel switches or another program. Since
8080A instructions require one, two, or three bytes,
the program counter must keep track of which instruc-
tion is being executed so it increments at the proper
time (Fig. 8.5). To avoid errors, make sure that a data
byte does not follow an instruction when another in-
struction is expected by the processor.

A group of the 8080A's instructions, often referred
to as transfer-of-control commands, cause program
execution to branch to a set of instructions that are out
of numerical sequence (located in a different part of the
memory). The address specified to jump to must contain
another instruction since the processor is waiting to
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Memory address
(Hex) bytes of instruction Inst # PC contents

0212 1 0213

0213

0214 E 2 0215

0215 3 0216

0216

0217

0218
} 4 0219

0219 5 021 A

021A

0218 1 6 021C

0210

021 D
021 E

} 7 021 F

021F 8 0220

0220 9 0221

0221 10 0222

Fig. 8.5 Depending on whether the instruction is
one, two, or three bytes long, the program counter
will increment by one, two, or three.

get an instruction, not data. Thus, as you can see, ad-
dressing the memory is an important part of any proces-
sor's program. And there are several ways that memory
locations can be accessed.

Direct Memory Addressing uses the two bytes
immediately following the instruction to point to the
memory location being accessed. For instance, the
instruction LDA XY tells the processor to load the con-
tents of memory address XY into the accumulator
(X represents the eight LSB's of the address and Y repre-
sents the eight MSB's). One point to especially note-
when using the 8080A, all addresses are entered in reverse
byte order the lower byte first and then the higher byte.

A memory address may also be specified by the
contents of a register pair (Register-Pair Addressing).

For many 8080A instructions the H and L registers are
used; the H register holds the eight MSB's of the address
and the L register holds the eight LSB's. An instruction
such as ADD M, adds the contents of a memory location
specified by the H and L registers to the number already
in the accumulator. There are, though, two instructions
that use either the B and C or D and E registers to
address the memory. These instructions, STAX and
LDAX, will store the contents of the accumulator or
load the accumulator to or from the location specified
by register pairs B and C or D and E.

In a reserved portion of memory called a stack,
memory words can also be accessed by using the SP
register to point to the location. This Stack-Pointer
Addressing, though, is not as flexible and there are only
two operations possible data can be put onto the stack
(a push operation) or retrieved from the stack (a pop

operation). A stack is very similar to a pile of cafeteria
trays; old trays get piled on the top and when removed
are taken away in reverse order (last in, first out). Dur-
ing a push operation, 16 bits of data are transferred to
the stack from either a register pair or the PC. The actual
address accessed is determined by the value of the SP
register. The eight MSB's are stored at the memory
address one less than the value of the SP register, the
eight LSB's are stored at the memory address two less
than the value of the SP, and the value of the SP ends up
decremented by two. For a pop operation, 16 data bits
are transferred from the memory to a register pair or
to the PC. The SP register determines which locations
are accessed. First, the second register of the pair (or the
eight LSB's) of the PC is loaded from the memory ad-
dress specified by the SP. Next, the first register of the
pair (or the eight MSB's of the PC) is loaded from the
memory address one greater than the value of the SP,
and lastly, the SP ends up incremented by two.

Another addressing mode, Immediate Addressing,
combines the instruction and the data to be handled in
sequential bytes. For instance, the instruction Load the
Accumulator with the value 2A (MV12A) has the opera-
tion (Load the Accumulator) and the data (2A) in two
sequential bytes. Immediate instructions do not access
the memory, nor are they as flexible as some other
commands.

Often, when writing programs there are groups of
instructions that are repeated several times during exe-
cution. Instead of repeating the instructions each time
they are needed, a master set of the instructions can
be accessed. This master set is called a subroutine since
it is usually only part of a larger, more complex program
(Fig. 8.6). Several instructions are available that can

PROGRAM

PROGRAM

PROGRAM

Z
PROGRAM I
PROGRAM

T

PROGRAM

SUBROUTINE

Fig. 8.6 A subroutine can be used each time the
main program must perform the same routine over
and over again at different points in its operation.
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divert the main program to the subroutine and then go
back to the main program (Call and Return). When the
Call instruction is executed, the address of the next
instruction, which is held in the PC, is pushed onto the
stack, the address of the starting instruction is loaded
into the processor, and the subroutine is then executed.
The last executed instruction of the subroutine is usually
a Return instruction which pops an address off the stack
and loads it back into the PC, thus bringing the main
program back into action and execution continues with
the "next" instruction. Sometimes there can even be
subroutines within subroutines and they can be stacked
(often called nested) one within the next within the
next, etc., up to any amount, limited only by the amount
of memory available for the stack.

Condition Bits in the 8080A Tell
You Its Secrets

As part of the 8080A, there are five special bits
known as condition or status bits that are available as
indicators to reflect the results of data operations. All
but one of these bits (the auxiliary carry bit) can be
tested by program instructions, which, in turn, can alter
the flow of the program depending on the state of the bit.
If a bit is set, its logic value is 1; if it is reset, its logic
value is 0. The five bit names are the carry bit, auxiliary
carry bit, sign bit, zero bit, and parity bit.

The carry bit can be set or reset by various data
operations, and its condition (0 or 1) can be tested by
an instruction. Operations that can alter the bit are
addition, subtraction, rotate, and logic commands. If a
carry is generated from the MSB of the bytes being
operated on, the carry bit is set; if no carry is generated,
the bit is reset. The auxiliary carry bit indicates a carry
from bit 3 to bit 4 of an operation in the accumulator.
It is set or reset by addition, subtraction, increment,
decrement, and compare instructions. As mentioned
before, it cannot be tested by a program instruction.
It is present only to enable one useful instruction, DAA
(decimal adjust accumulator), to do its job.

The sign bit is used to indicate the value of a byte
of data within the range of -128,o to +12710. If bit 7 of
a word is 1, the number represented by bits 0 to 6 is
within the range of -128,o to -1. If bit 7 is 0, the number
is in the range 0 to 1271o. After certain 8080A instruc-
tons have been executed, the sign bit will be set to the
condition of the MSB of the byte being examined. The
zero bit is set when the result generated by the execution
of certain instructions is zero. If the result is not zero,
the zero bit is reset. And a result that has a carry but a
zero answer will also set the zero bit. After certain
operations, byte parity is checked and the number of
I bits in a byte are counted. If the total is odd, odd parity
is flagged (parity bit set to 0); if the total is even, even
parity is indicated (parity bit set to 1).

Source program

NOW: MOV A, 8

CPI V

JZ LER
Is
converted
to

95

Object program

78

FE 43

CA7C3D

LER: MOV M,A / 77

Fig.8.7 Although programming in assembly lan-
guage provides you with readable source code, the
final program used by the computer must be in object
code.

Just to summarize what has been said so far, pro-
gramming can be done at any of three levels-machine
language, assembly language, or high-level language.
For this chapter, we will look at machine and assembly
language programming and how to develop programs
for the 8080A. Also, we've seen that inside the 8080A are
seven accessible, general-purpose registers (including
the accumulator), a stack pointer, and a program
counter. With these registers and five condition bits,
all aspects of microprocessor operation can be observed
and controlled.

Programs can, of course, be written in the simplest
form-machine language. However, unless you know
all the instructions by heart you'll be hard pressed to
remember what you've written, and which byte repre-
sents an instruction or data. So for now, programming
in assembly language is the best route to follow. When
you write programs for your computer system in assem-
bly language, the programs must be translated into
executable code either by hand on a line-by-line basis
or by a program called an assembler that is also stored
in the computer. The assembly language program writ-
ten by you is referred to as a source program which is
then converted by an assembler into an object program
that can be loaded into the processor's memory and
executed (Fig. 8.7). So, before going any further with
the discussion of programming, let's first look at the
various 8080A instructions and what they do.

Examine the 8080A Instruction Set Carefully

There are 78 basic instructions in the 8080A com-
mand set and the only way to find out what each one
does is to examine each one. Tables 8.1 and 8.2 sum-
marize all the instructions (Table 8.1 in increasing op
code value and Table 8.2 in alphabetical order), but to
examine each one, let's pull apart each instruction going
in alphabetical order.

Mnemonic and definition; op code

ACI Add immediate data to accumulator with carry;
CE.

The byte immediately following the instruction
is assumed to be data and is added to the contents
of the accumulator plus the contents of the carry
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Table 8.1 8080A Instructions by Increasing Op Code Value

Op Op Op Op Op Op
Code Mnemonic Code Mnemonic Code Mnemonic Code Mnemonic Code Mnemonic Code Mnemonic

00 NOP 2B DCX H 56 MOV D, M 81 ADD C AC XRA H D7 RST 2
01 LXI B, D16 2C INR L 57 MOV D, A 82 ADD D AD XRA L D8 RC
02 STAX B 2D DCR L 58 MOV E, B 83 ADD E AE XRA M D9 -
03 INX B 2E MVI L, D8 59 MOV E, C 84 ADD H AF XRA A DA JC Adr
04 INR B 2F CMA 5A MOV E, D 85 ADD L BO ORA B DB IN D8
05 DCR B 30 - 5B MOV E, E 86 ADD M B1 ORA C DC CC Adr
06 MVI B, D8 31 LXI SP, D16 5C MOV E, H 87 ADD A B2 ORA D DD -
07 RLC 32 STA Adr 5D MOV E, L 88 ADC B B3 ORA E DE SBI D8
08 - 33 INX SP 5E MOV E, M 89 ADC C B4 ORA H DF RST 3
09 DAD B 34 INR M 5F MOV E, A 8A ADC D B5 ORA L EO RPO
OA LDAX B 35 DCR M 60 MOV H, B 8B ADC E B6 ORA M El POP H
OB DCX B 36 MVI M, D8 61 MOV H, C 8C ADC H B7 ORA A E2 JPO Adr
OC INR C 37 STC 62 MOV H, D 8D ADC L 88 CMP B E3 XTHL
OD DCR C 38 - 63 MOV H, E BE ADC M B9 CMP C E4 CPO Adr
OE MVI C, D8 39 DAD SP 64 MOV H, H 8F ADC A BA CMP D E5 PUSH H
OF RRC 3A LDA Adr 65 MOV H, L 90 SUB B BB CMP E E6 ANI D8
10 - 3B DCX SP 66 MOV H, M 91 SUB C BC CMP H E7 RST 4
11 LXI D, D16 3C INR A 67 MOV H, A 92 SUB D BD CMP L E8 RPE
12 STAX D 3D DCR A 68 MOV L, B 93 SUB E BE CMP M E9 PCHL
13 INX D 3E MVI A, D8 69 MOV L,C 94 SUB H BF CMP A EA JPE Adr
14 INR D 3F CMC 6A MOV L, D 95 SUB L CO RNZ EB XCHG
15 DCR D 40 MOV B, B 6B MOV L, E 96 SUB M C1 POP B EC CPE Adr
16 MVI D, D8 41 MOV B, C 6C MOV L, H 97 SUB A C2 JNZ Adr ED -
17 RAL 42 MOV B, D 6D MOV L, L 98 SBB B C3 JMP Adr EE XRI D8
18 - 43 MOV B, E 6E MOV L, M 99 SBB C C4 CNZ Adr EF RST 5
19 DAD D 44 MOV HB MOV L A SBB D C PUSH F P, 6F , 9A 5 B O R
1 A LDAX D 45 MOV B, L 70 MOV M, B 9B SBB E C6 ADI D8 F1 POP PSW
1 B DCX D 46 MOV B, M 71 MOV M, C 9C SBB H C7 RST 0 F2 JP Adr
1C INR E 47 MOV B, A 72 MOV M, D 9D SBB L C8 RZ F3 DI
1D DCR E 48 MOV C, B 73 MOV M, E 9E SBB M C9 RET Adr F4 CP Adr
1 E MVI E, D8 49 MOV C, C 74 MOV M, H 9F SBB A CA JZ F5 PUSH PSW
1F RAR 4A MOV C, D 75 MOV M, L AO ANA B CB - F6 ORI D8
20 - 4B MOV C, E 76 HLT Al ANA C CC CZ Adr F7 RST 6
21 LXI H, D16 4C MOV C, H 77 MOV M, A A2 ANA D CD CALL Adr F8 RM
22 SHLD Adr 4D MOV C, L 78 MOV A, B A3 ANA E CE ACI D8 F9 SPHL

23 INX H 4E MOV C, M 79 MOV A, C A4 ANA H CF RST 1 FA JM Adr

24 INR H 4F MOV C, A 7A MOV A, D A5 ANA L DO RNC FB El

25 DCR H 50 MOV D, B 7B MOV A, E A6 ANA M D1 POP D FC CM Adr

26 MVI H, D8 51 MOV D, C 7C MOV A, H A7 ANA A D2 JNC Adr FD -

27 DAA 52 MOV D, D 7D MOV A, L A8 XRA B D3 OUT D8 FE CPI D8

28 - 53 MOV D, E 7E MOV A, M A9 XRA C D4 CNC Adr FF RST 7

29 DAD H 54 MOV D, H 7F MOV A, A AA XRA D D5 PUSH D

2A LHLD Adr 55 MOV D, L 80 ADD B AB XRA E D6 SUI D8

D8 = constant, or logical /arithmetic expression that evaluates to an D16 = constant, or logical/arithmetic expression that evaluates to
8-bit data quantity. a 16-bit data quantity.

Adr = 16-bit address.
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Table 8 .2 8080A Instructions in Alphabetical Order

Mnemonic Description Mnemonic Description

AC I Add immediate to A with carry LHLD Load H & L direct
ADC M Add memory to A with carry LXI B Load immediate register pair B & C
ADC r Add register to A with carry LXI D Load immediate register pair D & E
ADD M Add memory to A LXI H Load immediate register pair H & L
ADD r Add register to A LXI SP Load immediate stack pointer
ADI Add immediate to A MVI M Move immediate memory
ANA M And memory with A MVI r Move immediate register
ANA r And register with A MOV M, r Move register to memory
ANI And immediate with A MOV r, M Move memory to register
CALL Call unconditional MOV ri r2 Move register to register
CC Call on carry

,
NOP No-operation

CM Call on minus ORA M Or memory with A
CMA Compliment A ORA r Or register with A
CMC Compliment carry ORI Or immediate with A
CMP M Compare memory with A OUT Output
CMP r Compare register with A PCHL H & L to program counter
CNC Call on no carry POP B Pop register pair B & C off stack
CNZ Call on no zero POP D Pop register pair D & E off stack
CP Call on positive POP H Pop register pair H & L off stack
CPE Call on parity even POP PSW Pop A and flags off stack
CPI Compare immediate with A PUSH B Push register pair B & C on stack
CPO Call on parity odd PUSH D Push register pair D & E on stack
CZ Call on zero PUSH H Push register pair H & L on stack
DAA Decimal adjust A PUSH PSW Push A and flags on stack
DAD B AddB&CtoH&L RAL Rotate A left through carry
DAD D AddD&EtoH&L RAR Rotate A right through carry
DAD H Add H & L to H & L RC Return on carry
DAD SP Add stack pointer to H & L RET Return
DCR M Decrement memory RLC Rotate A left
DCR r Decrement register RM Return on minus
DCX B Decrement B & C RNC Return on no carry
DCX D Decrement D & E RNZ Return on no zero
DCX H Decrement H & L RP Return on positive
DCX SP Decrement stack pointer RPE Return on parity even
DI Disable Interrupt RPO Return on parity odd
El Enable Interrupt RRC Rotate A right
HLT Halt RST Restart
IN Input RZ Return on zero
INR M Increment memory SBB M Subtract memory from A with borrow
INR r Increment register SBB r Subtract register from A with borrow
INX B Increment B & C registers SBI Subtract immediate from A with borrow
INX D Increment D & E registers SH LD Store H & L direct
INX H Increment H & L registers SPHL H & L to stack pointer
INX SP Increment stack pointer STA Store A direct
JC Jump on carry STAX B Store A indirect
JM Jump on minus STAX D Store A indirect
JMP Jump unconditional STC Set carry
JNC Jump on no carry SUB M Subtract memory from A
JNZ Jump on no zero SUB r Subtract register from A
JP Jump on positive SUI Subtract immediate from A
JPE Jump on parity even XCHG Exchange D & E, H & L registers
JPO Jump on parity odd XRA M Exclusive Or memory with A
JZ Jump on zero XRA r Exclusive Or register with A
LDA Load A direct XRI Exclusive Or immediate with A
LDAX B Load A indirect XTHL Exchange top of stack, H & L
LDAX D Load A indirect

NOTES: 1. DDD or SSS - 000 B - 001 C - 010 D - 011 E - 100H - 101 L - 110 Memory - 111 A. 2. Two possible cycle times, (5/11) in-
dicate instruction cycles dependent on condition flags.
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bit. All five condition bits can be affected by an
ACI operation.

ADC M or ADC r Add memory to accumulator with
carry or add register to accumulator with carry;
8E or 88, 89, 8A, 8B, 8C, 8D, or 8F (memory or
registers B, C, D, E, H, L, or A, respectively).

The specified byte plus the contents of the carry
bit are added to the contents of the accumulator.
All five condition bits can be affected.

ADD M or ADD r Add memory or register to accu-
mulator; 86 or 80, 81, 82, 83, 84, 85, or 87 (memory
or registers B, C, D, E, H, L, or A respectively).

The specified byte is added to the contents
of the accumulator using two's complement arith-
metic. All condition bits can be affected by an ADD
operation.

ADI Add immediate data to accumulator; C6.
The byte immediately following the instruction

is to be added to the contents of the accumulator
using two's complement arithmetic. All five condi-
tion bits can be affected by the instruction.

ANA M or ANA r Logic AND memory or register
with contents of accumulator; A6 or A0, Al, A2,
A3, A4, AS, or A7 (memory or registers B, C, D, E,
H, L, or A, respectively).

The specified byte is AN Ded bit by bit with the
contents of the accumulator and the carry bit is
reset to zero. All five condition bits can be affected
by the instruction.

ANI AND immediate data with accumulator; E6.
The byte of data immediately following the

instruction is ANDed with the contents of the accu-
mulator and the carry bit is reset to zero. All five
condition bits can be affected by the instruction.

CALL Call a subroutine; CD XY (X = low address
byte, Y = high address byte).

A CALL operation is an unconditional request
to the processor to go to a subroutine at address
YX. CALL pushes the contents of the program
counter (the address of the next sequential instruc-
tion) onto the stack and then jumps to the address
specified. The instruction has no effect on the con-
dition bits.

CC Call if carry; DC XY.
This instruction examines the carry bit and if

the carry bit is one a CALL operation is performed
to location YX. CC pushes the contents of the PC
(program counter) onto the stack. No condition
bits are affected.

CM Call if minus; FC XY.
This instruction examines the sign bit (which

indicates a minus result if it is one) and will perform
a CALL operation to location YX if the sign bit is
one. CM pushes the contents of the PC onto the
stack. No condition bits are affected.

CMA Complement accumulator; 2F.

This instruction complements the contents of
the accumulator, producing the one's complement
of the number. No condition bits are affected.

CMC Complement carry bit; 3F.
This instruction complements the value of the

carry bit. Only the carry bit (CY) is affected.
CMP M or CMP r Compare memory or register with

accumulator; BE, or B8, B9, BA, BB, BC, BD, or
BF (memory or register B, C, D, E, H, L, or A).

The specified byte is compared to the contents
of the accumulator by internally subtracting the
contents of the register from the accumulator (leav-
ing both unchanged), and setting the condition
bits based on the result. For example, the zero bit
is set if the quantities are equal and is reset if
unequal. Since a subtraction operation is per-
formed, the carry bit will be set if there is no carry
out of bit 7, indicating that the contents of the regis-
ter is greater than the contents of the accumulator,
and reset otherwise. (If the two quantities differ
in sign, the sense of the carry bit is reversed.) All
condition bits can be affected by the instruction.

CNC Call if no carry; D4 XY.
This instruction examines the carry bit and

if the carry bit is a zero, a CALL operation to the
location YX is performed. No condition bits are
affected.

CNZ Call if no zero; C4 XY.
This instruction examines the zero bit and if

the bit is zero a CALL operation is performed to
location YX. No condition bits are affected.

CP Call if plus; F4 XY.
This instruction examines the sign bit and if

the bit is zero (indicating a positive result), a CALL
operation to location YX is performed. No condi-
tion bits are affected.

CPE Call if parity even; EC XY.
This instruction examines the parity bit and if

the bit is one (indicating even- parity), a CALL
operation to location YX is performed. No condi-
tion bits are affected.

CPI Compare immediate data with accumulator; FE.
The byte immediately following the instruction

is compared to the contents of the accumulator by
subtracting the byte from the accumulator by using
two's complement arithmetic. The comparison
leaves the accumulator unchanged but sets condi-
tion bits, depending on the result. A zero bit is set
if the quantities are equal, or a carry bit is set if
there is no carry of bit 7, indicating that the imme-
diate data are greater than the contents of the accu-
mulator, and reset otherwise.

CPO Call if parity odd; E4 XY.
This instruction examines the parity bit and if

the bit is zero (indicating odd parity), a CALL
operation to location YX is performed. No condi-
tion bits are affected.
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CZ Call if zero; CC XY.
This instruction examines the zero bit and if

the bit is set, a CALL operation to location YX is
performed. No condition bits are affected.

DAA Decimal adjust accumulator; 27.
This instruction adjusts the number in the ac-

cumulator to form two 4-bit BCD digits in two
steps:
1. If the least-significant four bits of the accumu-

lator represent a number greater than nine, or if
the auxiliary carry bit is equal to one, the accu-
mulator is incremented by six, otherwise no
incrementing occurs.

2. If the four MSB's of the accumulator now repre-
sent a number greater than nine, or if the normal
carry bit is equal to one, the MSB's are incre-
mented by six, otherwise no incrementing occurs.

If a carry out of the four LSB's occurs during
step 1, the auxiliary carry bit is set, otherwise
it is reset. Likewise, if a carry out of the four
MSB's occurs during step 2, the normal carry bit
is set, otherwise it is unchanged. (This instruction
is used when adding decimal numbers. It is the
only instruction whose operation affects the
auxiliary carry bit.) All condition bits can be
altered by this instruction.

DAD Double add; 09, 19, 29, or 39 (for the B, D, H,
or SP register pairs, respectively).

A 16-bit number held in the specified register
pair is added to the 16-bit number held in the H and
L registers using two's complement arithmetic. The
result replaces the contents of the H and L registers.
Only the carry bit can be affected by the operation.

DCR M or DCR r Decrement memory or register; 35
or 05, OD, 15, 1D, 25, 2D, or 3D (for memory or
registers B, C, D, E, H, L, or A, respectively).

This instruction increments the contents of the
specified memory location or register by one. The
zero, sign, parity, and auxiliary carry bits can be
affected by the instruction.

DCX r Decrement register pair; OB, 113, 2B, 3B (for
pairs B and C, D and E, H and L, or the stack
pointer, respectively).

This instruction causes the 16-bit number held
in the selected register pair to be decremented by
one. No condition bits are affected by the instruction.

DI Disable interrupts; F3.
This instruction resets the interrupt-enable

flip-flop, causing the processor to ignore any inter-
rupts. The interrupt system is disabled when the
processor recognizes an interrupt as well as after
a DI instruction. No condition bits are affected.

El Enable interrupts; FB.

This instruction sets the interrupt-enable flip-
flop, thus permitting the processor to recognize
and respond to interrupts. The interrupt is delayed
one instruction to allow interrupt subroutines to
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return to the main program before a subsequent
interrupt is acknowledged. No condition bits are
affected.

HLT Halt; 76.
This instruction causes the PC to increment

to the address of the next sequential instruction
and then the processor enters a stopped state; no
further activity takes place until an interrupt occurs.
If a HLT instruction is executed while interrupts
are disabled, the only way to restart the processor
is to apply a Reset sequel.

IN Input; DB Z (Z is an 8-bit number representing
the port address).

This instruction tells the processor to access
port number Z, read an 8-bit data byte from the
port, and load the byte into the accumulator. No
condition bits are affected.

INR M or INR r Increment memory or register; 34 or
04, OC, 14, 1 C, 24, 2C, or 3C (for memory or register
B, C, D, E, H, L, or A respectively).

This instruction increments the specified mem-
ory location or register by one. All condition bits
except the carry bit can be affected by the instruction.

INX Increment register pair; 03, 13, 23, or 33 (for
the B and C, D and E, H and L registers, or the SP,
respectively).

This instruction increments by one the 16-bit
number held in the specified register pair. No con-
dition bits are affected.

JC Jump if carry; DA XY.
This instruction examines the carry bit and if

the bit is one, program execution continues at mem-
ory address YX. No conditions bits are affected.
This instruction is similar to the CALL instruction
except that no return address is stored in the stack.
(The CALL instruction puts the value of the PC in
the stack before going to a subroutine.)

JM Jump if minus; FA XY.
This instruction examines the sign bit and if

the bit is one (indicating a negative result), program
execution continues at address YX. No condition
bits are affected.

JMP Jump; C3 XY.
This instruction forces the processor to uncon-

ditionally continue its processing at memory loca-
tion YX. No condition bits are affected.

JNC Jump if no carry; D2 XY.
This instruction examines the carry bit and

if the bit is zero (indicating no carry), program
execution continues at memory location YX. No
condition bits are affected.

JNZ Jump if no zero; C2 XY.
This instruction examines the zero bit and if

the bit is zero, program execution continues at
memory location YX. No condition bits are affected.

JP Jump if positive; F2 XY.
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This instruction examines the sign bit and if
the bit is zero (indicating a positive or zero result),
program execution continues at memory location
YX. No condition bits are affected.

JPE Jump if parity even; EA XY.
This instruction examines the parity bit and

if the bit is one (indicating a result with even parity),
program execution continues at memory location
YX. No condition bits are affected.

JPO Jump if parity odd; E2 XY.
This instruction examines the parity bit and

if the bit is zero (indicating a result with odd parity),
program execution continues at memory location
YX. No condition bits are affected.

JZ Jump if zero; CA XY.
This instruction examines the zero bit and if

the bit is one, program execution continues at
memory address YX. No condition bits are affected.

LDA Load accumulator direct; 3A XY.
The byte of data at location YX is moved into

the accumulator, replacing whatever was in there.
No condition bits are affected.

LDAX B or LDAX D Load accumulator; OA or IA.
This instruction puts the byte addressed by the

B and C or D and E registers into the accumulator,
replacing whatever was in there. No condition bits
are affected.

LHLD Load H and L registers direct; 2A XY.
This instruction accesses location YX and

places the byte stored there into the L register. Then
the location address is automatically incremented
by one to YX + I and the contents of that location
are placed in the H register. No condition bits are
affected.

LXIB, LXID, LXIH, or LXI SP Load register pair
with immediate data; 01, 11-1 21, or 31 (for the B and
C, D and E, H and L pairs, or the SP registers,
respectively).

These instructions consist of three bytes, the
first of which is the actual instruction and the next
two are data. When performed, these instructions
cause the specified register pair to be loaded with
the data contained in the second and third bytes.
The second byte of the instruction is loaded into
the second register or 8 LSE's of the pair specified,
while the third byte is loaded into the first register
or 8 MSB's of the pair specified. No condition bits
are affected.

MOV M, r or MOV r, M or MOV r, r Move byte from
to; for memory to register: 70, 71, 72, 73, 74, 75, and
77 (for destination registers B, C, D, E, H, L or A,
respectively); for register to memory: 46, 4E, 56,
5E, 66, 6E, or 7E (for registers B, C, D, E, H, L
or A, respectively); or for register to register: 40,
41, 44, 45, 47 (B to B, C, D, E, H, L, or A),
or 48, 49, 4A, 4B, 4C, 4D, 4F (for C to B, C, D, E,
H, L, or A), or 50, 51, 52, 53, 54, 55, 57 (for D to B,

C, D, E, H, L, or A), or 58, 59, 5A, 5B, 5C, 5D, 5F
(for E to B, C, D, E, H, L, or A), or 60, 61, 62, 63,
64, 65, 67 (for H to B, C, D, E, H, L, or A), or 68, 69,
6A, 6B, 6C, 6D, 6F (for L to B, C, D, E, H, L, or A)
and 78, 79, 7A, 7B, 7C, 7D, or 7F (for A to B, C, D,
E, H, L, or A respectively). Total of 63 possible
instruction codes.

This instruction moves one byte of data to the
first specified location called the destination register
(M or r) from the second specified location called
the source register. The byte transferred replaces
the contents of the destination register but the
source register is left unchanged. The only invalid
transfer is a memory to memory transfer; instruc-
tion code 76 is not permitted (it is used for a HALT
instruction). When a memory reference move is re-
quested the memory address is specified by the
contents of the H and L registers; the L register
holds the 8 LSB's and the H register holds the
8 MSB's.

MVI M or r Move immediate data, 36 or 06, OE, 16,
1 E, 26, 2E, or 3E (for memory or registers B, C, D,
E, H, L, or A, respectively).
This instruction takes the byte immediately follow-
ing the instruction and stores it in the memory
location or register specified. No condition bits
are affected.

NOP No operation; 00.
This instruction performs no operation; execu-

tion proceeds with the next sequential instruction.
It is useful for generating time delays. No condition
bits are affected.

ORA M or ORA r Logic OR memory or register with
accumulator; B6 or 130, B1, B2, B3, B4, B5, or B7
(for memory or registers B, C, D, E, H, L, or A,
respectively).

This instruction performs a logic OR operation
between the byte specified by M or r and the con-
tents of the accumulator. The carry bit and auxil-
iary carry bit are reset to zero. All condition bits can
he affected.

ORI OR immediate data with accumulator; F6.
This instruction performs a logic OR operation

between the byte of data immediately following the
instruction and the contents of the accumulator,
storing the result in the accumulator. All condition
bits can be affected but the carry bit and auxiliary
carry bit are reset to zero.

OUT Output; D3 Z.
This instruction transfers the contents of the

accumulator to the output device connected to the
port number specified in byte Z following the in-
struction. No condition bits are affected. This is
the opposite of the IN instruction.

PCHL Load program counter from H and L; E9.
This instruction transfers the 16 bits of infor-

mation held in the H and L registers into the PC,
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replacing whatever was in the PC. The contents of
the H and L registers are unchanged. No condition
bits are affected.

POP B or POP D or POP H or POP PSW Pop data
off stack; C 1, D 1, E 1, or F 1 (for registers B and C,
D and E, H and L, or A and PSW, respectively).

These instructions remove two bytes of data
from the stack and load them into the specified
register pair. The byte of data at the memory ad-
dress indicated by the SP is loaded into the second
register of the pair and the byte of data at SP + I is
loaded into the first register of the pair. After data
have been restored, the SP is incremented by two.
If the POP PSW instruction is used, all condition
bits are affected, otherwise no condition bits are
affected.

PUSH B or PUSH D or PUSH H or PUSH PSW
Push data onto stack; C5, D5, E5, or F5 (for regis-
ters B and C, D and E, H and L, or A and PSW,
respectively).

These instructions transfer data from the se-
lected register pair onto the stack. The byte of data
from the first register of the pair is saved at memory
location SP - I (one less than the address indicated
by the SP) and the other byte of data is saved at
memory location SP - 2. When the PSW byte is
saved there are three other bits along with the
condition bits that are saved; they are bits 5, 3, and
I of the word and are 0, 0, and 1 respectively. In any
case, after data have been saved, the SP is decre-
mented by two. No condition bits are affected.

RAL Rotate accumulator left through carry; 17.
This instruction shifts the contents of the accu-

mulator one bit position to the left with the higher
order accumulator bit replacing the carry bit and
the carry bit replacing the low order bit (end around
carry). The carry bit is the only condition bit
affected.

RAR Rotate accumulator right through carry; IF.
This instruction shifts the contents of the accu-

mulator one bit position to the right, with the carry
bit shifted into the MSB of the accumulator and the
LSB of the accumulator shifted into the carry bit.
The carry bit is the only condition bit affected.

RC Return if carry; D8
This instruction examines the carry bit, and

if the bit is one, a return operation is performed.
No condition bits are affected.

RET Return; C9.
This instruction pops two bytes of data off the

stack and places them into the PC register. Execu-
tion of the program resumes at the new address. It
generally causes program execution to proceed with
the instruction immediately following the most
recent CALL instruction. The RET command is an
unconditional instruction and brings the subroutine
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being executed to an end. No condition bits are
affected.

RLC Rotate accumulator left; 07.
This instruction shifts the contents of the accu-

mulator one bit position to the left, with the carry
bit set equal to the MSB of the accumulator before
the shift and the MSB then shifted into the LSB
position. The carry bit is the only condition bit
affected.

RM Return if minus; F8.
This instruction examines the sign bit and if the

bit is one (indicating a minus result), a return
operation is performed. No condition bits are
affected.

RNC Return if no carry; DO.
This instruction examines the carry bit and if

the bit is zero, a return operation is performed.
No condition bits are affected.

RNZ Return if not zero; CO.
This instruction examines the zero bit and if

the bit is zero, a return operation is performed.
No condition bits are affected.

RP Return if plus; FO.
This instruction examines the sign bit and if

the bit is zero (indicating a positive result), a return
operation is performed. No condition bits are
affected.

RPE Return if parity even; E8.
This instruction examines the parity bit and if

the bit is one (indicating even parity), a RET opera-
tion is performed. No condition bits are affected.

RPO Return if parity odd; EO.
This instruction examines the parity bit and if

the bit is zero (indicating odd parity), a RET opera-
tion is performed. No condition bits are affected.

RRC Rotate accumulator right; OF.
This instruction shifts the contents of the accu-

mulator one bit position to the right and before the
shift sets the carry bit equal to the value of the ac-
cumulator's LSB. When shifted, the accumulator's
LSB is transferred into the MSB position. The
carry bit is the only condition bit affected.

RST Restart; C7, CF, D7, DF, E7, EF, F7, or FF.
This instruction is normally used in conjunc-

tion with up to eight 8-byte routines in the lowest
64 bytes of memory in order to service interrupts
to the processor. Each RST instruction causes the
processor to go to a different starting location:
0000, 0008, 0010, 0018, 0020, 0028, 0030, or 0038.
When invoked, this instruction forces the contents
of the PC onto the stack, providing a return address
for later use by a RET instruction. No condition
bits are affected.

RZ Return if zero; C8.
This instruction examines the zero bit and if the

bit is one, a RET operation is performed. No condi-
tion bits are affected.
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SBB M or SBB r Subtract memory or register from
accumulator with borrow; 9E or 98, 99, 9A, 9B, 9C,
9D, or 9F (for memory or registers B, C, D, E, H,
L, or A, respectively).

The contents of the memory location specified
by the HL register pair or the B, C, D, E, H, L, or
or A register and the contents of the carry bit are
both subtracted from the accumulator and the
result is left in the accumulator. All condition bits
can be affected by this instruction.

SBI Subtract immediate data from accumulator with
borrow; DE Z.

The contents of the second byte of the instruc-
tion, Z, and the contents of the carry bit are both
subtracted from the accumulator. The result is kept
in the accumulator. All condition bits can be
affected.

SHLD Store H and L direct; 22 XY.
This instruction stores the contents of register

L in the location specified by YX and the contents
of the H register are stored in the next higher loca-
tion (YX + 1). No condition bits are affected.

SPHL Load SP from H and L; F9.
This instruction transfers the contents of the

H and L registers into the stack pointer, leaving
the contents of the H and L registers unchanged.
No condition bits are affected.

STA Store accumulator direct; 32 XY.
This instruction transfers the contents of the

accumulator to the memory location specified by
bytes YX. No condition bits are affected.

STAX B or STAX D Store accumulator; 02 or 12.
This instruction stores the contents of the accu-

mulator in the memory location specified by either
the B and C register pair or the D and E register
pair. No condition bits are affected.

STC Set carry; 37.
This instruction sets the carry bit to one. Only

the carry bit is affected.

SUB M or SUB r Subtract memory or register from
accumulator; 96 or 90, 91, 92, 93, 94, 95, or 97 (for
memory or registers B, C, D, E, H, L, or A,
respectively).

This instruction specifies a byte in memory or
in a specific register that is to be subtracted from
the accumulator by use of two's complement arith-
metic. If there is no carry out of the MSB of the
accumulator, indicating that a borrow occurred,
the carry bit is set; otherwise it is reset. All condi-
tion bits can be affected.

SUI Subtract immediate data from accumulator;
D6 Z.

This instruction subtracts the second instruc-
tion byte, Z, from the contents of the accumulator
using two's complement arithmetic. Because this is
a subtraction operation, the carry bit sets to indi-
cate a borrow if there is no carry out of the MSB

or the accumulator. If there is a carry out, the carry
bit is reset. All condition bits can be affected.

XCHG Exchange registers; EB.
This instruction exchanges the data held in the

H and L registers with the data stored in the D and
E registers. No condition bits are affected.

XRA M or XRA r Logic Exclusive-OR memory or
register with accumulator (zero accumulator); AE
or A8, A9, AA, AB, AC, AD, or AF (for memory
or registers B, C, D, E, H, L, or A, respectively).

This instruction performs an Exclusive-OR
operation between the specified memory location
or register and the accumulator. The carry and
auxiliary carry bits are reset to zero. The result of
the Exclusive-OR operation is left in the accumu-
lator. All condition bits can be affected.

XRI Exclusive-OR immediate data with accumula-
tor; EE Z.

This instruction performs and Exclusive-OR
operation between the immediate data byte, Z, and
the contents of the accumulator. The carry bit is
set to zero. All condition bits can be affected.

XTHL Exchange stack; E3.
This instruction transfers the contents of the

L register to the memory location whose address is
held in the stack pointer and transfers what was in
the memory location to the L register. And, the
contents of the H register are swapped with the
byte whose address is one greater than the address
held in the stack pointer. No condition bits are

affected.

Write Your Programs Systematically

To ease the development of programs, the first
thing to do is to set up a procedure to write down all
the instructions, and note all the branch points. First,
each instruction can be set up so that it is spread apart
into four parts called fields.

Field 1 is called a label field and is used to indicate
all addresses for the instructions.

Field 2 is called the code field and is used to show
the actual code for the instruction that is to be performed.

Field 3 is the operand field and it shows any im-
mediate data or address information needed by the in-
structions in the code field.

Field 4 is a comment area to permit you to make
notes for yourself so that you can easily see what the
program is doing.

Label I OP Code Operand
MnemonicCode Comments

Fig. 8.8 If programs are converted to object code by
hand, the best method to use is a large chart that has
columns for all the intermediate steps and comments
to clarify the program flow.
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Address
Field
Label Op Code Operand Mnemonic Code Comments

0000 3E 03 MVI A,Z Move next byte into A
0002 D3 10 OUT Z Output A to port 10
0004 3E 11 MVI A,Z Move next byte into A
0006 D3 10 OUT Z Output A to port 10
0008 DB 10 Loop IN Z Input data from port 10 to A
OOOA OF RRC Rotate A right one bit
0006 D2 08 00 JNC XY Jump to XY if carry bit = 0
000E DB 11 IN Z Input data from port 11 to A
0010 D3 11 OUT Z Output data to port 11 from A
0012 C3 08 00 JMP XY Jump unconditionally to XY

Fig.8.9 This simple program permits a terminal to transmit a character to the Altair com-
puter and then has the computer echo back the same character to the terminal.

Address
Field
Label Op Code Operand Mnemonic Code Comments

0000 3E CA MVI A,Z Move mode byte into A
0002 D3 03 OUT Z Output A to port 03
0004 3E 27 MVI A,Z Move command byte into A
0006 D3 03 OUT Z Output A to port 03
0008 DB 03 Loop IN Z Input byte to A from port 03
OOOA E6 02 ANI Z AND immediate to A to mask

000C CA 08 00 JZ XY
all but receive bit

Jump back to XY if A = 0
OOOF DB 02 IN Z Input data from port 02 to A
0011 D3 02 OUT Z Output data to port 02 from A
0013 C3 08 00 JMP XY Jump unconditionally to XY

Fig.8.10 Performing a similar echo procedure for the Imsai 8080 computer, this simple
program requires about the same number of commands.

Thus, when you start to write a program, make up
a table, much like that shown in Fig. 8.8. Jump or
branch instructions are a very important part of many
computer programs since they are capable of altering
the sequential program flow. As listed earlier, the
8080A has many jump, return, and call instructions
that permit it to examine specific conditions and go
to a subroutine just for those conditions. These instruc-
tions control many computer operations. As a simple
example, let's look at a program that lets you type a
character on a terminal, accepts the character, and then
sends back the same character to the terminal so it
prints it (Fig. 8.9). This routine is called an echo pro-
cedure and can be used to test the terminal interface
since it is short and can easily be entered via the front
panel switches of the computer.

The first instruction loads the number 03 into the
accumulator; this is part of the set-up information
needed by an ACIA used on a serial interface board
by Pertec. The next instruction outputs the 03 to port
10 to actually load the information into the ACIA. The
third instruction again loads a number into the accu-
mulator and, again, this number 11 is preliminary
set-up information for the ACIA. Now, the computer
and serial port are ready to handle data so the next in-
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struction tells the computer to treat the information on
the bus from port 10 as an input and load the informa-
tion into the accumulator. The next instruction rotates
the contents right one bit to shift the LSB into the carry
bit so it can be checked by the next instruction. If there
is no carry the program goes back to the input instruc-
tion and loops through the same three instructions until
a carry occurs. When a carry finally does occur the pro-
gram goes to the next instruction which says input data
from port 11 into the accumulator. After the data are in
the accumulator, they are then output with the next in-
struction back on port 11, thus echoing the entered char-
acter. The final instruction sends the computer back to
the waiting loop to detect an entered character.

However, that program is not the only way to echo
a character. Imsai's SIO-2 card uses the 8251 and re-
quires different program set-up information (Fig. 8.10).
And, instead of rotating the accumulator, the program
uses a "mask" word (a mask is a bit pattern designed to
cover up or eliminate all bits in a word that are not de-
sired) to check the contents of the accumulator. De-
pending upon the serial interface circuit, either of the
programs will do the job. But this simple program can't
do anything more than just echo the characters back-
it doesn't even store them in memory. And, even if you



104 The S-100 Bus Handbook

Table 8.3 ASCII Codes

Character

ASCII
Binary
Code

ASCII
Hex

Code

ASCII
Binary

Character Code

ASCII
Hex

Code

A 1000001 41 w 1110111 77

B 1000010 42 x 1111000 78
C 1000011 43 y 1111001 79
D 1000100 44 z 1111010 7A
E 1000101 45 0 0110000 30
F 1000110 46 1 0110001 31
G 1000111 47 2 0110010 32
H 1001000 48 3 0110011 33
I 1001001 49 4 0110100 34
J 1001010 4A 5 0110101 35
K 1001011 4B 6 0110110 36
L 1001100 4C 7 0110111 37
M 1001101 4D 8 0111000 38
N 1001110 4E 9 0111001 39
O 1001111 4F d 0100000 20
P 1010000 50 0100001 21
Q 1010001 51 11 0100010 22
R 1010010 52 # 0100011 23
S 1010011 53 $ 0100100 24
T 1010100 54 % 0100101 25
U 1010101 55 & 0100110 26
V 1010110 56 0100111 27
W 1010111 57 0101000 28
X 1011000 58 0101001 29
Y 1011001 59 • 0101010 2A
Z 1011010 5A + 0101011 2B

a 1100001 61 0101100 2C

b 1100010 62 0101101 2D

c 1100011 63 0101110 2E

d 1100100 64 / 0101111 2F

e 1100101 65 0111010 3A

f 1100110 66 0111011 3B

g 1100111 67 < 0111100 3C

h 1101000 68 0111101 3D

i 1101001 69 > 0111110 3E

i 1101010 6A ? 0111111 3F

k 1101011 6B @ 1000000 40

I 1101100 6C [ 1011011 5B

m 1101101 6D \ 1011100 5C
n 1101110 6E 1011101 5D
0 1101111 6F 1011110 5E

p 1110000 70 1011111 5F

q 1110001 71 1100000 60
r 1110010 72 { 1111011 7B

S 1110011 73 1111100 7C

t 1110100 74 I. 1111101 7D

u 1110101 75 1111110 7E

v 1110110 76 1111111 7F

did have the characters entered in memory, they would
be in ASCII form and would first have to be converted
back to pure binary in order to run in the computer.
Let's take a look at how some of the conversion is per-
formed for just the hex numbers.

To start with, look at the ASCII codes that repre-
sent the numbers and letters 0 to F (Table 8.3). The
numbers follow an increasing binary code pattern as do
the letters. However the pattern is different between
the numbers and letters, and since the final result must

USE REGISTERS
B AND C
AS MEMORY
POINTER

SET UP
ECHO ROUTINE
AND DATA
FOR USARTS

INPUT DATA
FROM PORTII
TO A; ECHO
IT BACK

I

NEW
INSTRUCTION

BASIC
ECHO
ROUTINE

STORE CHARACTER IN
MEMORY LOCATION
POINTED TO BY B AND C
REGISTERS, INCREMENT
B AND C REGISTERS

Z
Fig. 8.11 Modifying the echo routine to store char-
acters that are entered requires that an extra few steps
be added to keep track of the memory location and to
initialize the pointer to a predetermined value.

be a 4-bit code, a different check routine must be used
to determine if the input character is a number. The
flow chart must start with the basic echo routine with
one extra step to set up a register pointer to indicate
where in memory the characters are stored (Fig. 8.11).
Now the job becomes more complex.

To start with, the data in the accumulator must be
temporarily stored so that several tests can be per-
formed on the data without losing the data. So let's
store the data in the memory location addressed by
registers B and C. Now, even though the value was
stored, it is still also in the accumulator and can be used.
The next 'step, then, is to determine whether the data
represent a number between 0 and 9 or a letter between
A and F (Fig. 8.12). Start this process by comparing
the 8-bit number in the accumulator with the lowest
value you're concerned with, zero (in ASCII the value
is 30). Then, if the value in the accumulator is smaller
than 30 the program should go back and wait for an-
other character. If the result of the compare operation
is zero or positive, the program then must determine if
the character is 0 to 9 or A to F.
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Z FROM BILL

COMPARE
AC TO 0

COMPARE
AC TO A"

MASK OFF
FIRST FOUR
BITS

COMPARE
AC TO G

SUBTRACT
7 FROM
CHARACTER

Z
MASK
OFF FIRST
FOUR BITS

I
STORE
NUMBER
INCREMENT
POINTER

I
Fig. 8.12 Although the task of determining the value
of the number held in the accumulator can be done in
different ways, this flowchart suggests one possible
direction the program flow can take.

The next step is to compare the value of the ac-
cumulator with the ASCII nine (39). If the value of the
accumulator is smaller than 39 the contents represent
a number between 0 and 9 and the program goes to a
subroutine to strip away the ASCII code and store the
number in a memory location. If the accumulator is
greater than zero the program checks to see if the code
is at least that of the letter A (41). If the value of the
accumulator is less than the value of A the character
isn't one that's being looked for, so the program goes
back to wait for another character. When the value of
the compare result is equal to or greater than A, the next
step is to make sure the ASCII character is only an A,
B, C, D, E, or F. So next the program checks for a G
or higher. If the value is that of a G or higher, the pro-
gram again goes to the wait portion to accept the next

character entered. When the program recognizes the
characters A to F, it also goes to another routine to
determine exactly which letter it is.

Next, of course, is the procedure to strip away the
ASCII code so all that's left is the 4-bit hex represen-
tation of 0 to F. For a number the stripping is easy
the last four bits of the code represent the actual number
so all that has to be done is to mask out (eliminate)
whatever is in the first four bits. To do the masking an
AND immediate instruction with a data byte containing
OF can eliminate the first four accumulator bits and
leave the last four bits unaffected. The data byte in the
accumulator is then stored in a memory location, whose
address is stored in the B and C registers.

Determining the correct conversion for the alpha-
betic character is more complex. Each character can be
compared in a six-step process. First, since the code is
in the accumulator it can be compared using a CPI in-
struction with ASCII for A to F and if a match exits the
program can branch. So, the first step could be a CPI
command, and then a JZ command to do the branch,
bringing the program to the correct conversion step.
The code for F does not have to be used since after E
it is the only other possibility. So for F, all the pro-
gram has to do is load the hex code for F into the accu-
mulator and then go to the final subroutine to store the
accumulator in memory, increment the memory pointer
register, and go back to get another character.

The program that accomplishes all that is shown in
Fig. 8.13 and is listed in assembly code in Fig. 8.14. As
you can see, it's fairly complex and if you didn't have
the comments or the mnemonics to use, it would be al-
most impossible to understand, as illustrated by the
assembled code version of the same program in Fig.
8.15.

Organize Your Work Carefully When
Writing Programs

As pointed out earlier, organizing your notes be-
fore writing a program can save much time later on
when trying to figure out why it doesn't work. To start
program organization, the initial attack is to, of course,
define what you want the program to do, and possibly
divide it into smaller routines that work on their own
and then just link the smaller programs together, either
by using them like subroutines or by melding the ad-
dresses so they run consecutively. Next, after the pro-
gram has been defined, the program should be flow-
charted so that all steps are clearly illustrated.

After the flowchart is drawn, the program must
actually be written. To help keep track of the actual
program steps, special forms made just for program-
ming provide you with the necessary columns and com-
ment spaces. For instance, Fig. 8.8 shows just such a
form developed by Walton Electronics with most of the
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MVI A,Z
OUT Z
MVI A,Z
OUT Z

Loop IN Z
RRC
JNC Loop
IN Z
CPI 30
JC Loop
CPI 40
JC Num
CPI 41

JC Loop
CPI 46
JNC Loop
OUT Z
SUI F9

Num ANI OF
STAX B
INX B
JMP Loop

LXI B, 00 10

Location

0000

0010

0020

0030

01 00 10
3E 03
03 10
3E II
D3 10
DB IQ
OF

Mini Terminal Monitor

Fig. 8.13 This is most of a program that will accept ASCII characters from a
terminal, strip them to their 4-bit hex values, pack them two to a byte, and then
store them in the memory.

01 00 10 3E

D2 OB 00 DB

00 FE 41 DA

F9 E6 OF 02

Set contents of B and C register to 1000

See Fig. 8.9 for explanation

Input keyboard data into accumulator
Compare accumulator with ASCII code for 0
If accumulator is less jump back to Loop
Otherwise compare with ASCII @
If less go to Num subroutine
Otherwise compare with ASCII A

If less, go back to Loop
Otherwise compare with ASCII F
If greater than F go back to Loop
Otherwise output character
Subtract complement of ASCII 7 from accumulator
AND contents of accumulator with OF mask
Store contents of accumulator at address B
Increment address B
Go back and get another character

Contents

03 D3 10 3E 11 D3 10 DB

11 FE 30 DA OB 00 FF 40

OB 00 FE 46 D2 OB 00 D3

03 C3 OB 00

Fig. 8.14 Machine code listing of the assembly program in Fig. 8.13.

0028 ,
0029
0026 ,
0024 ,
0021 .

0018
001E

0019

0014
0016

0012;
000E i
OOOD

0009
0008

0007 (

0000
0003
0005

0031
0030

002D
002F

XY

D2 08 00
DB II ....
FE 30
DA 08 00
FE 4Q
DA 2D 00
FE 41
DA 08 00
FE 46
02 OB : 0Q
03 II
06 F9
E6 OF NUM

02
03
C3 OB 00

LXI B,0010
MVI A, 03.
OUT 10
MVI A, 11
OUT 10
INPUT 10
RRC
JNC XY
INPUT II
CPI 30
JC XY
CPI 40
JC NUM
CPI 41
JC XY
CPI 46
JNC XY
OUT II
Sul F9
ANI OF
STAR B
INX B
JMP XY

8080A

10 OF

DA 2D

11 D6

Set up 88 C as painter starting at 1000
Load immediate 03 into accumulator
Output accumulator on port 10
Load immediate Il into accumulator
Output accumulator on port 10
Input data from port 10 to accumulator
Rotate accumulator right through carry
Loop to XY it carry=0
Otherwise input data from port I Ito accumulator
Compare accumulator with ASCII code 30
Jump to XY if accumulator <30
Otherwise compare accumulator with ASCII -40

' mc40Jup to NUM if acumulator -
Otherwise compare accumulator with ASCII 41
Jump to XY if accumulator - 41
Otherwise compare accumulator with ASCII 46
Jump to XY if accumulator - 46
Output accumulator on port II
Subtract immediate data from accumulator
AND immediate data with accumulator
Store accumulator at location specified by B&C
Increment contents of BBC registers
Jump to XY and get another character

Fig. 8.15 By using specially prepared paper coding forms, such as this one from Walton Electronics, hand assembly and conversion of
programs into object code form is not very difficult.
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information filled in. This makes it very easy to under-
stand what the program is doing every step of the way.
After the program is written in assembly language it
must be converted into machine language so it can be
stored in the computer's memory and perform its job.
To do the conversion you must either assemble the pro-
gram yourself, sticking in the appropriate numbers for
the addresses whenever the program branches, jumps,
or returns, or use a special program called an assem-
bler that takes the mnemonics as they are entered via
a keyboard, checks for errors, and translates the
mnemonics into the instruction codes and inserts the
proper addresses.

Assemblers, depending on their complexity, permit
you to not only type in the instructions in mnemonic
form but to just give one command and get back a
coded version of the program ready to run on the com-
puter. Other programs called system monitors were
mentioned earlier, but these are used in conjunction
with the assembler. The monitor tells the computer
how to "talk" to the terminal and any other devices,
such as mass memories or a printer, and tells the com-
puter how to store and access the various instructions.

Thus, to handle the input from a serial device such
as a CRT terminal, the computer must really have some
sort of monitor program. With the basic system from
Imsai comes a combination monitor, assembler, and
text-editor program originally developed by a company
called Microtec. The text-editor portion of the program
permits the user to set aside space in the memory for
files. And, each line of program statements is prefaced
by a fixed line number reference that permits simple
search and reference capability. Up to 10,000 lines can
exist in each file, assuming the memory is large enough.
As lines are typed on the terminal they are entered into
the designated file area and assigned a line number. The
user can initialize the line sequence by entering a four
digit decimal number. An entry to the editor is termi-
nated by hitting the carriage return; no more than 80
characters can be typed on a single line.

CONTROL-X Kill current line
ENTR Enter data to memory
DUMP Display memory data
FILE Create , assign, or display file information
EXEC Execute a program
ASSM Assemble a source file to object code
LIST List file
DELT Delete lines of file
1111 Any four numeric digits enters Editor program
PAGE Move a page of data
BREK Set or clear breakpoints
PROC Proceed from breakpoint
CVST Optional user- defined control at location 2000

Fig.8.16 The monitor and executive program pro-
vided with the Imsai 8080 computer system includes
these commands to help develop assembly language
programs.
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The overall software package requires about 6
kwords of memory, so one 8 k RAM card can be used
and it will provide about 2 kwords of program area.
Part of the program interacts with the I/O ports, which
are set up to respond as follows:

Port Function

2 TTY Data
3 TTY Status

Bit 0 indicates TBE
Bit 1 indicates DAV

FF Sense-switch input
Address/ program input
Switch seven controls the file listing

Use Software from Others to Write Your Own

The software in the package from Imsai lets you
use the computer system to develop your own software.
Doing all the control is the monitor and executive por-
tion of the package. The monitor controls the 1/0 de-
vices while the executive provides commands to per-
form different programming operations (Fig. 8.16). To
initialize the system, start it at 0000; to restart without
initializing it, start at 0003. There is also one error mes-
sage included-WHAT?-that indicates an improper
command or parameter error on the command.

The assembler portion of the software translates
the mnemonic assembly code into machine code for the
computer. It operates in two passes (it has to be run
twice)-once to allocate all storage necessary for the
final program and to define the value of all symbols used
for program loops, constants, etc., by creating a sym-
bol table for lookup. The second pass evaluates all ex-
pressions, symbols, and ASCII characters, gives them
absolute values, and places them in the allocated mem-
ory. A listing is also produced to indicate exactly what
information is in each location.

Features of the assembler include the following:

• Free format source input
• Symbolic addressing, including forward refer-

ences and relative symbolic references
• Complex expressions may be used as arguments
• Self-defining constants
• Multiple constant forms
• Up to 256 five-character symbols
• Reserved names for 8080 registers
• ASCII character code generation
• Six special operations (assembler directives)

referred to as pseudo operations

Translating the lines of code contained in the cur-
rent file into machine code, the assembler uses the sec-
ond character following the line number to be the first
source (assembly language) code character position.
Thus, the character immediately following the line
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0015 FLOP MOV M , B
0020 *COMMENT
0025 JMP BEG

0030 CALL FLOP

0035 BEG ADI8+6-4

0040 MOV A,B

Fig. 8.17 A short listing using the Editor part of the
Imsai software.

should normally be a space. Line numbers are not proc-
essed by the assembler; they are just duplicated on the
listing.

Statements may be assembly language commands
and symbolic locations or pseudo operations (pseudo
operations direct the assembler to perform functions
that do not always result in a translation of assembly
code into machine code). Each statement is broken into
fields, much as before when using pad and pencil. There
are four fields:

Name Operation Operand Comment

The Name field begins in character position one
(one space after the line number listing). The symbol
used in the field can contain any number of characters,
but only the first five are used in a symbol table to
uniquely define the symbol. All symbols used in the
files must begin with an alphabetic character and may
contain no special characters. The Operation field con-
tains either an 8080 mnemonic or a system pseudo op-
eration name. The Operand field contains parameters
pertaining to the operation listed in the Operation field.
If two arguments are present, a comma must separate
them. An example of a short listing is shown in Fig.
8.17. All fields are separated and distinguished from
one another by the presence of one or more spaces. The
Comment field provides space for explanatory remarks
and is reproduced on the listing without being proc-
essed. Separate lines that begin with an asterisk are
also comment lines.

To assign a symbolic name to a statement, such as
FLOP, in the example of Fig. 8.17, just place the name
in the Name field. If not, just skip a few spaces and you
begin the Operation field. When a symbolic name is
used, the assembler assigns it the value of the current
location counter. The location counter always holds the
address of the next byte to be assembled. And the only
exception to this is the EQU pseudo op in which the
symbol in the Name field is assigned a value in the Op-
erand field. For instance:

0057 POTTS EQU 128

assigns the value 128 to the name POTTS, which can
then be used elsewhere in the program , such as in the
instruction ADI POTTS.

In addition to the user-defined names, the assembler
has some special reserved symbols that have predeter-
mined uses (Table 8.4). These names may not be used
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Table 8.4 Reserved Assembler Symbols
COMMENT

A-Accumulator
B-Register B
C-Register C
D-Register D
E-Register E
H-Register H
L-Register L

M-Memory location addressed by H and
P-Program status word
S-Stack pointer

L registers

except in the Operand field. In addition to the reserved
symbols, there is a special character symbol $ that
changes in value as the assembly progresses-it is always
equated with the value of the program counter after
the current instruction is assembled and it may only be
used in the Operand field. For example, the program in
Fig. 8.18 shows some use of the $ symbol.

If the name of a particular location is known, the
assembler program permits a nearby location to be speci-
fied using the known name and a numeric offset (Fig.
8.19). In the example shown, the command JMP BEG
refers to the MOV instruction while the command JPE
BEG + 4 refers to the JNR B instruction. BEG + 4
means the address BEG plus four.

The assembler also allows positive or negative num-
bers to be written directly, instead of in two's comple-
ment form. The numbers will be regarded as decimal
constants and their binary equivalent will be used by
the program. All assigned numbers are considered posi-
tive. Decimal constants can be defined using the de-
scription D after the numeric value. However, this is
not required except for clarity's sake if you're using
octal or hex numbers too. Hex constants are defined

JMP $ Means jump to this location after this instruction;
MOV A,B that is, the MOV instruction.
LDA $+5 Means load the data at the fifth location after this
DB 0 location . In this case, the data have the value
DB 1 of 5.
DB 2
DB 3
DB 4
DB 5

Fig. 8.18 Some uses of the $ symbol are shown in
these program lines.

JMP BEG
JPE BEG +4
CC SUB
CALL $ +48

BEG MOV A,B
H LT
MVI C, 'B'
INR B

Fig. 8.19 Sample program showing the use of the
JMP BEG command.
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using the description H after a numeric value, for in-
stance +10H, 10H, 3AH, OF4H. A hex constant cannot
start with the letters A to F. If needed, a leading zero
must be included to enable the assembler to differenti-
ate between a numeric value and a symbol. ASCII con-
stants can be defined by surrounding the character
within single quote marks ('C' for example). For double
word constants, two characters can be defined with one
quote string.

Expressions consist of sequences of one or more
symbols, constants, or other statements separated by the
arithmetic operators + or -. For example, PAM + 3,
ISAB - `A' + 52, or LOOP + 32H - 5 are expressions.
All expressions are calculated using 16-bit arithmetic
and all arithmetic is done modulo 65,536. Single byte
data cannot contain a value greater than 255 or less than
-256. Any value outside their range will result in an as-
sembler error.

Pseudo Operations Add Flexibility to the
Assembler

The pseudo operation statements help the assem-
bler perform its job by supplying the programmer with
some handy functions. There are six operations avail-
able to the user of the Imsai Assembler:

ORG (set program origin): This format for the pseudo
is ORG expression.

END (end of assembly): This pseudo op informs the
assembler that the last source statement has been
read. The assembler will then start on pass 2, ter-
minate the assembly, and then pass control back to
the executive. This pseudo op is not needed when
assembling from a memory file since the assembler
will stop when an end of file indicator has been
reached.

EQU (equate symbolic value): This pseudo op has a
similar format to the ORG directive where the label
is a symbol whose value will be determined from
the expression. When evaluated, the expression,
will be assigned to the symbol in the same field.

DS (define storage): The form for this pseudo op is
also similar to ORG. This pseudo op causes the as-
sembler to advance the assembly prograni counter,
effectively skipping past a given number of mem-
ory bytes.

DB (define byte): Also similar in format to ORG, this
pseudo op is used to reserve one byte of storage.
The content of the byte is specified in the argument
field.

DW (define word): This pseudo op defines two bytes of
storage. The evaluated argument will be placed in
the two bytes; high-order 8-bits in the low-order
byte and the low-order 8-bits in the high-order byte,
thus conforming to the format used by 8080A sys-
tems for storing two-byte addresses. When an error

Table 8.5 Error Indicators from the Assembler

O-Operation code error
L-Label error
D-Duplicate label error
M-Missing label error
V-Value error
U-Undefined symbol
S-Syntax error
R-Register error
A-Argument error
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occurs during assembly, error indicators are out-
put by the assembler (Table 8.5). Some of the error
indicators are only output during pass 1.

While the system has no explicit provisions to save
and restore programs, it is possible to do so using an
ASR style teletypewriter. To do so requires that the user:

1. Make the file to be saved the current file.
2. Type `LIST' but don't type carriage return.
3. Turn on the paper-tape punch.
4. Type carriage return. (The program will be listed on

the teletypewriter and simultaneously punched on
the paper tape punch.)

5. When the `LIST' is completed, turn off the punch.

To restore the file the procedure is simpler:

1. Make the file you want to restore into the current
file.

2. Put the tape into the tape reader.
3. Start reader; the program will be automatically

read in.

A similar procedure using the DUMP and ENTR com-
mands may be used to save and restore machine code
programs.

The program to do all the editing, assembling, and
monitoring would require about twenty pages to print
so it is not listed here . However, Imsai does have copies
of the programs available for a small fee. As you can
see, some sort of supervisory program is essential for
simple machine operation . There are simpler programs
that do nothing but monitor specific ports and let you
enter programs . Let's take a close look at the program
used by Vector Graphic in their PROM / RAM board,
which was shown in Chapter 5. The program is just a
monitor that lets you use a terminal that delivers serial
ASCII and a cassette tape-recorder interface.

There are nine commands available in the monitor
routine that are called by typing an ASCII character
for each routine (G, D, P, T, R, W, V, L, or A). The
procedure implemented by each command is as follows:

G XXXX: Go to location XXXX and start
execution.

D XXXX YYYY : Display memory contents from lo-
cation XXXX to YYYY.

P XXXX YYYY: Put information into memory at
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location XXXX and ending at lo-
cation YYYY.

T XXXX YYYY: Test memory starting at location
XXXX and go to YYYY and out-
put any errors.

R XXXX YYYY: Read cassette and load data start-
ing at location XXXX and ending
at location YYYY.

W XXXX YYYY: Write data onto cassette starting at
location XXXX and ending at lo-
cation YYYY.

V XXXX YYYY: Verify data on cassette by reading
the tape and comparing the check-
sum with that recorded on the tape.
No byte-by-byte comparison is
made.

L XXXX YYYY: Load program into memory loca-
tions XXXX to YYYY and start

0000 0010 CONC

0000 0020 COND

0000 0030 CASD

0000 0040 CASC

0000 0050 SPTR

0000 0051

*G

*D

*T

*R
*W

*V

*L

*A

LLLL GO TO LOC LLLL AND EXEC

SSSS FFFF DISPLAY MEMORY

LLLL PROGRAM MEMORY

SSSS FFFF TEST MEMORY

SSSS FFFF READ CASSETTE

SSSS FFFF WRITE CASSETTE

SSSS FFFF VERIFY CASSETTE

SSSS FFFF LOAD AND GO

SSSS FFFF ASCII DUMP

C003 0090 INIT

COOB 31 00 DO 0100 START

COOE CD 81 CO 0105

C011 3E 2A 0110

C013 CD 75 CO 0120

C016 CD 8B CO 0130

C019 F5 0140

C01A CD 73 CO 0150

C01D F1 0160

C01E FE 47 0170

C020 CC 4E CO 0180

C023 FE 56 0190

C025 CC CB CO 0200

C028 FE 57 0230

C02A CA 99 CO 0240

C02D FE 44 0250

C02F CC BE C1 0260

C032 FE 50 0270

C034 CC C6 C1 0280

C037 FE 52 0290

C039 CC CB CO 0300

0000 0055

0000 0056

0000 0057

0000 0058

0000 0059

0000 0060

0000 0061

0000 0062

0000 0063

0000 0064

0000 0070

0000 C3 03 CO 0080

EQU

EQU

EQU

EQU

EQU

execution at XXXX if no errors
exist.

A XXXX YYYY: Dump ASCII characters from lo-
cations XXXX to YYYY.

The assembly code listing for the program is shown
in Fig. 8.20 . As with almost all monitor programs, the
first command is a jump instruction that is executed
either upon power on or when the, RESET switch is
pressed . So now the processor jumps to location C003
where it starts the initialization process and then goes
to location COOB where the stack pointer is loaded with
the immediate data OODO and then calls a subroutine
CRLF at location C081 which is used to print a carriage
return by first loading OD (ASCII code for carriage
return ) into the accumulator and then jumping to an-
other subroutine , PTCN at location C075, which pushes
the contents of the accumulator onto the stack at the
location loaded into the stack pointer register.

0 CONSOLE STAT PORT

1 CONSOLE DATA PORT

6FH CASSETTE DATA PORT

6EH CASS STAT PORT

OD000H STACK POINTER

0000 0052 *** VECTOR ONE MONITOR - VERSION 1.2(A)
0000 0053 FOR SIO REV. 1 AND 3P+S W. INV . STATUS

0000 0054 ********* COMMAND FORMAT *********

JMP INIT
DS 8
LX I SP,SPTR
CALL CRLF
MVI A,'*'
CALL PTCN

PRINT "*"

CALL RDCN READ KEYBOARD

PUSH PSW SAVE INPUT

CALL SPCE

POP PSW RESTORE ACC
CPI 'G' IF G
CZ EXEC EXECUTE A PROGRAM

CPI 'V' IF V,

CZ CINR GOTO INPUT ROUTINE
CPI W' IF W
JZ COUTR GO TO CASS OUT
CPI D' IF D
CZ DISP GO TO MEM DISP
CPI 'P' IF P
CZ PGM GO TO PROG MEM
CPI R' IF R
CZ CINR GOTO CASS IN

Fig. 8.20 Excerpt from the monitor program used by Vector Graphic on their PROM/RAM board.
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C03C FE 4C 0310 CPI 'L' IF L
C03E CC CB CO 0320 CZ CINR DO A LOAD AND GO
C041 FE 54 0330 CPI 'T' IF T

C043 CC 19 C1 0340 CZ TMEM TEST MEMORY

C046 FE 41 0342 CPI 'A' IF A
C048 CC BE C1 0344 CZ DISP DUMP ASCII
C04B C3 OB CO 0350 JMP START START OVER

E 6C04 003
C04E 0370 *** EXECUTE THE PROGRAM AT THE ADDRESS
C04 E 3800
C04E CD 57 CO 0390 EXEC CALL AHEX READ ADD FROM KB
C051 EB 0392 XCHG

C052 11 OB CO 0394 LX I D,START
C055 D5 0396 PUSH D

C056 E9 0400 PCHL JUMP TO IT
C057 0410

C057 0420 *** CONVERT UP TO 4 HEX DIGITS TO BIN
C057 0430

C057 21 00 00 0440 AHEX LXI H,0 GET 16 BIT ZERO
C05A OE 04 0450 MVI C,4 COUNT OF 4 DIGITS
C05C CD 8B CO 0460 AHEI CALL RDCN READ A BYTE

C05F 29 0470 DAD H SHIFT 4 LEFT

C060 29 0480 DAD H

C061 29 0490 DAD H

C062 29 0500 DAD H

C063 D6 30 0510 SUI 48 ASCII BIAS

C065 FE OA 0520 CPI 10 DIGIT 0-10

C067 DA 6C CO 0530 JC ALF

C06A D6 07 0540 SUI 7 ALPHA BIAS

C06C 85 0550 ALF ADD L

C06D 6F 0560 MOV L,A

C06E OD 0570 DCR C 4 DIGITS?

C06F C2 5C CO 0580 JNZ AHEI KEEP READING

C072 EB 0585 XCHG

C073 3E 20 0590 SPCE MVI A,20H PRINT SPACE

C075 F5 0600 PTCN PUSH PSW SAVE REG A

C076 DB 00 0610 PTLOP IN CONC READ PRTR STATUS

C078 E6 80 0620 ANI 80H IF BIT 7 NOT 0,

C07A C2 76 CO 0630 JNZ PTLOP WAIT TILL TIS
C07D F1 0640 POP PSW THEN RECOVER A

C07E D3 01 0650 OUT COND AND PRINT IT

C080 C9 0660 RET RETURN FROM PTCN

C081 3E OD 0670 CRLF MVI A,ODH PRINT CR

C083 CD 75 CO 0680 CALL PTCN

C086 3E OA 0690 MVI A,OAH
C088 C3 75 CO 0700 JMP PTCN

*C08B 0710

C08B 0720 * READ FROM CONSOLE TO REG A ***
8 0BC0 073

C08B DB 00 0740 RDCN IN CONC READ KB STATUS

C08D E6 01 0750 ANI 1 IF BIT 1 NOT 0

C08F C2 8B CO 0760 JNZ RDCN REPEAT UNTIL IT IS
C092 DB 01 0770 IN COND READ FROM KB

C094 E6 7F 0780 ANI 7FH STRIP OFF MSB

C096 C3 75 CO 0790 JMP PTCN ECHO ONTO PRINTER

C099 0860

C099 0870 *** CASSETTE INTERFACE OUTPUT ROUTINE ***
C099 0880

C099 CD 57 CO 0890 COUTR CALL AHEX READ BLOCK LENGTH

C09C CD 57 CO 0910 CALL AHEX READ STARTING ADD

C09F 06 00 0920 MVI B,0 START CHECKSUM = 0
COA1 CD BF CO 0930 CALL COUT START BYTE OUT

COA4 3E E6 0940 M V I A,OE6H SEND SYNC BYTE

COA6 CD BF CO 0950 CALL COUT TO CASSETTE

COA9 7E 0960 COLOP MOV A,M GET DATA FROM MEM
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COAA CD BF CO 0970 CALL COUT SEND TO CASSETTE

COAD 80 0980 ADD B ADD TO CHECKSUM
COAE 47 0990 MOV B,A
COAF CD F5 Cl 1000 CALL BMP
C082 C2 A9 CO 1040 JNZ COLOP REPEAT LOOP

COB5 78 1050 MOV A B GET CHE MKS, UC
COB6 CD BF CO 1060 CALL COUT OUTPUT IT
COB9 CD 74 Cl 1065 CALL PT2 PRINT CHECKSUM
COBC C3 OB CO 1070 JMP START GET ANOTH COMMND
COBF F5 1080 COUT PUSH PSW SAVE A AND FLAGS

COCO DB 6E 1090 CLOP IN CASC READ CASS STATUS

COC2 E6 20 1100 ANI 20H LOOK AT BIT 5
COC4 C2 CO CO 1110 JNZ CLOP TRY AGAIN?

COC7 Fl 1120 POP PSW RESTORE A

COCS D3 6F 1130 OUT CASD SEND DATA TO CASS
COCA C9 1140 RET RETURN FROM COUT

COCB 1150

COCB 1160 *** CASSETTE INPUT ROUTINE ***
COCB 1170

COCB F5 1180 CINR PUSH PSW SAVE CONTROL CHAP
COCC 3E 10 1190 MVI A,10H USE BIT 4 IN PEG A
COCE D3 6E 1200 OUT CASC TO RESET CASS INT
CODO CD 57 CO 1210 CALL AHEX READ BLOCK LENGTH

COD3 CD 57 CO 1230 CALL AHEX READ STARTING ADD
COD6 Fl 1240 POP PSW GET CONTROL CHAP
COD7 E5 1250 PUSH H SAVE START ADD

COD8 F5 1260 PUSH PSW UNDER CONTROL CHAP
COD9 06 00 1270 MVI B,0 SET CHECKSUM = 0
CODB CD OF Cl 1280 CILOP CALL CIN READ FM CONS
CODE 4F 1290 MOV C,A SAVE IT IN REG C
CODF Fl 1300 POP PSW GET CONTROL CHAR
COEO F5 1310 PUSH PSW SAVE IT BACK
COE1 FE 56 1320 CPI V' IS IT A V?
COE3 79 1330 MOV A,C GET BACK DATA BYTE
COE4 CA E8 CO 1340 JZ CINO IF C, DON'T STORE
COE7 77 1350 MOV M,A IF NOT, STORE
COE8 80 1360 CINO ADD B ADD TO CHECKSUM
COE9 47 1370 MOV B,A
COEA CD F5 Cl 1380 CALL BMP

COED C2 DB CO 1420 JNZ CILOP READ MORE
COFO CD OF Cl 1430 CALL CIN READ LAST BYTE
COF3 F5 1431 PUSH PSW

COF4 CD 74 Cl 1432 CALL PT2 PRINT CHECKSUM

COF7 CD 73 CO 1434 CALL SPCE SPACE OVER
COFA Fl 1435 POP PSW

COFB B8 1440 CMP B COMP TO CHKSUM
COFC 3E 45 1450 MVI A,'E' PRINT E FOR ERROR
COFE C2 09 Cl 1460 JNZ CERR PRINT NOW IF ERROR
C101 Fl 1470 POP PSW RECOVER CTL CHAR

C102 FE 4C 1480 CPI 'L' IF NOT L
C104 C2 09 Cl 1490 JNZ CERR DON'T EXECUTE
C107 El 1500 POP H OTHERWISE, EXECUTE
C108 E9 1510 PCHL AT STARTING ADDRESS
C109 CD 75 CO 1520 CERR CALL PTCN PRINT V,E, OR R
C10C C3 OB CO 1530 JMP START
C1OF DB 6E 1540 CIN IN CASC READ STATUS
C111 E6 10 1550 ANI 10H LOOK AT BIT 4
C113 C2 OF Cl 1560 JNZ CIN WAIT UNTIL LOW
C116 DB 6F 1570 IN CASD READ DATA FM CASS
C118 C9 1580 RET RETURN FROM CIN
C119 1590

C119 1600 *** MEMORY TEST ROUTINE ***
C119 1610

C119 CD 57 CO 1620 TMEM CALL AHEX READ BLK LEN
C11C CD 57 CO 1640 CALL AHEX READ ST ADD

Fig. 8.20 (cont'd) Excerpt from the monitor program used by Vector Graphic on their PROM/RAM board.
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C11F 01 5A 5A 1650 LXI B,5A5AH INI B,C

C122 CD 4A Cl 1660 CYCL CALL RNDM

C125 C5 1670 PUSH B KEEP ALL REGS

C126 E5 1680 PUSH H

C127 D5 1690 PUSH D

C128 CD 4A Cl 1700 TLOP CALL RNDM

710 MOV M B WRITE IN MEMC12B 70 1 ,

C12C CD F5 Cl 1720 CALL BMP

C12F C2 28 Cl 1760 JNZ TLOP REPEAT LOOP

C132 Dl 1770 POP D

C133 El 1780 POP H RESTORE ORIG

C 4 C 1790 POP B VALUES OF13 l

C135 E5 1800 PUSH H

C136 D5 1810 PUSH D

C137 CD 4A Cl 1820 RLOP CALL RNDM GEN NEW SEQ

C13A 7E 1830 MOV A,M READ MEM

C13B B8 1840 CMP B COMP MEM
C13C C4 68 Cl 1850 CNZ ERR CALL ERROR ROUT

C13F CD F5 Cl 1860 CALL BMP

C142 C2 37 Cl 1930 JNZ RLOP

C145 Dl 1940 POP D

C146 El 1950 POP H

C147 C3 22 Cl 1960 JMP CYCL

C14A 1970 *** THIS ROUTINE GENERATES RANDOM NOS
C14A 78 1980 RNDM MOV A,B LOOK AT B
C14B E6 B4 1990 ANI OB4H MASK BITS
C14D A7 2000 ANA A CLEAR CY

C14E EA 52 Cl 2010 JPE PEVE JUMP IF EVEN
C151 37 2020 STC

C152 79 2030 PEVE MOV A,C LOOK AT C
C153 17 2040 RAL ROTATE CY IN

C154 4F 2050 MOV C,A RESTORE C
C155 78 2060 MOV A,B LOOK AT B
C156 17 2070 RAL ROTATE CY IN
C157 47 2080 MOV B,A RESTORE B
C158 C9 2090 RET RETURN W NEW B,C
C 100159

C159

2
2110 *** ERROR PRINT OUT ROUTINE

C1 1259 2 0

C159 CD 81 CO 2130 PTA D CALL CRLF PRINT CR,LF

C15C 7C 2140 MOV A,H PRINT

C15D CD 74 Cl 2150 CALL PT2 ASCII
C160 7D 2160 MOV A,L CODES

C161 CD 74 Cl 2170 CALL PT2 FOR

C164 CD 73 CO 2180 CALL SPCE ADDRESS
C167 C9 2200 RET

C168 F5 2210 ERR PUSH PSW SAVE ACC

C169 CD 59 Cl 2220 CALL PTAD PRINT ADD.
C16C 78 2230 MOV A,B DATA

C16D CD 74 Cl 2240 CALL PT2 WRITTEN
C170 CD 73 CO 2250 CALL SPCE

C173 Fl 2270 POP PSW DATA READ

C174 F5 2280 PT2 PUSH PSW
C175 CD 7C Cl 2290 CALL BINH
C178 Fl 2300 POP PSW
C179 C3 80 Cl 2310 JMP BINL
C17C 1 F 2320 BINH RAR

C17D 1 F 2330 RAR

C17E 1 F 2340 RAR

C17F 1F 2350 RAR

C180 E6 OF 2360 BINL ANI OFH LOW 4 BITS
C182 C6 30 2370 ADI 48 ASCII BIAS

C184 FE 3A 2380 CPI 58 DIGIT 0-9
C186 DA 75 CO 2390 JC PTCN

C189 C6 07 2400 ADI 7 DIGIT A-F
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C18B C3 75 CO 2410

C18E 2420

JMB PTCN

C18E 2430 *** DISPLAY MEMORY CONTENTS
C18E 2440
C18E 47 2450 DISP
C18F CD 57 CO 2455
C192 CD 57 CO 2470
C195 OE 10 2480 ENT1

C197 CD 59 Cl 2490

C19A 78 2492 LP2

C19B FE 41 2500

C19D 7E 2505

C19E CA B2 Cl 2507

C1A1 CD 74 Cl 2510

C1A4 CD 73 CO 2515

C1A7 CD F5 Cl 2520 LP3

Cl AA C8 2525

C1AB OD 2530
C1AC CA 95 Cl 2540
C1AF C3 9A Cl 2600
Cl B2 E6 60 2601 ASCD
Cl B4 C2 BD Cl 2602
Cl B7 CD 73 CO 2603

C1 BA C3 A7 Cl 2604

C1 BD 7E 2605 NCON
C1BE E6 7F 2606

Cl CO CD 75 CO 2607

C1C3 C3 A7 Cl 2608

C1C6 2610

C1C6 2620

C1C6 2630

MOV B,A SAVE CONTROL
CALL AHEX START
CALL AHEX FINISH
MVI C,16 LOC/LINE
CALL PTAD
MOV A,B
CPI 'A'
MOV A,M
JZ ASCD
CALL PT2
CALL SPCE
CALL BMP
RZ
DCR C

IS IT "A"?

DUMP ASCII
PRINT OUT

JZ ENTI END OF LINE
JMP LP2 CONTINUE LOOP
ANI 60H MASK FOR CONTROL
JNZ NCON
CALL SPCE
JMP LP3
MOV A,M
ANI 7FH
CALL PTCN
JMP LP3

PROGRAM MEMORY

C1C6 CD 57 CO 2640 PGM
C1C9 EB 2645
Cl CA CD 81 CO 2650
C1CD 7E 2660 PGLP

C1CE CD 74 Cl 2670

Cl D1 3E 2D 2680
Cl D3 CD 75 CO 2690
C1D6 CD 8B CO 2700 GRIG

C1D9 FE 2F 2710

C1DB C8 2720

Cl DC FE OD 2730
C1 DE C2 E7 Cl 2740
C1 E1 CD 81 CO 2750
C1E4 C3 D6 Cl 2760
C1E7 EB 2770 CON1
C1E8 21 00 00 2780

C1EB OE 02 2790

C1ED CD 5F CO 2800

C1 F0 73 2820

C1F1 23 2830

Cl F2 C3 CD Cl 2840

Cl F5 7B 3000 BMP

C1F6 95 3010

C1F7 C2 FC Cl 3020

C1FA 7A 3030

C 1 F B 9C 3040
Cl FC 23 3050 GOON
C1FD C9 3060

CALL AHEX

XCHG

CALL CRLF

MASK FOR ASCII

READ ADD.

MOV A,M READ MEMORY

CALL PT2 PRINT 2 DIG.

MVI A,'-' LOAD DASH

CALL PTCN PRINT DASH

CALL RDCN

CPI

RZ

CPI ODH

JNZ CONI

CALL CRLF

JMP CRIG

XCHG

LXI H,0
MVI C,2
CALL AHEI+3
MOV M,E
INX H
JMP PGLP
MOV A,E
SUB L
JNZ GOON
MOV A,D

SBB H
INX H
RET

QUIT ON SLASH

SKIP IF CR
PRINT CR,LF
BACK FO MO
H,L > D,E
GET 16 BIT ZERO
COUNT 2 DIG.
CONV TO HEX
WRITE IN MEM
INC POINTER
KEEP GOING
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SYMBOL TABLE

AHEI C05C AHEX C057 ALF C06C ASCD C1B2 BINH C17C BINL C180

BMP C1F5 CASC 006E CASD 006F CERR C109 CILOP CODB CIN C10F

CINO COE8 CINR COCB CLOP COCO COLOP COA9 CON1 C1E7 CONC 0000

COND 0001 COUT COBF COUTR C099 CRIG C1D6 CRLF C081 CYCL C122

DISP C18E ENT1 C195 ERR C168 EXEC C04E GOON C1FC INIT C003

LP2 C19A LP3 C1A7 NCON C1BD PEVE C152 PGLP C1CD PG M C1C6

PT2 C174 PTA D C159 PTCN C075 PTLOP C076 R DCN C08B R LOP C137

RNDM C14A SPCE C073 SPTR D000 START COOB TLOP C128 TMEM C119

D 3000 31FF

3000 C3 03 CO 00 00 00 00 00 00 00 00 31 00 DO CD 81

3010 CO 3E 2A CD 75 CO CD 8B CO F5 CD 73 CO Fl FE 47

3020 CC 4E CO FE 56 CC CB CO FE 57 CA 99 CO FE 44 CC

3030 BE Cl FE 50 CC C6 Cl FE 52 CC CB CO FE 4C CC CB

3040 CO FE 54 CC 19 Cl FE 41 CC BE Cl C3 OB CO CD 57

3050 CO EB 11 OB CO D5 E9 21 00 00 OE 04 CD 8B CO 29

3060 29 29 29 D6 30 FE OA DA 6C CO D6 07 85 6F OD C2

3070 5C CO EB 3E 20 F5 DB 00 E6 80 C2 76 CO Fl D3 01

3080 C9 3E OD CD 75 CO 3E OA C3 75 CO DB 00 E6 Di C2

3090 8B CO DB 01 E6 7F C3 75 CO CD 57 CO CD 57 CO 06

30A0 00 CD BF CO 3E E6 CD BF CO 7E CD BF CO 80 47 CD

30BO F5 Cl C2 A9 CO 78 CD BF CO CD 74 Cl C3 OB CO F5

3000 DB 6E E6 20 C2 CO CO Fl D3 6F C9 F5 3E 10 D3 6E

30DO CD 57 CO CD 57 CO Fl E5 F5 06 00 CD OF Cl 4F Fl

30EO F5 FE 56 79 CA E8 CO 77 80 47 CD F5 Cl C2 DB CO

30FO CD OF Cl F5 CD 74 Cl CD 73 CO Fl B8 3E 45 C2 09

3100 Cl Fl FE 4C C2 09 Cl El E9 CD 75 CO C3 OB CO DB

3110 6E E6 10 C2 OF Cl DB 6F C9 CD 57 CO CD 57 CO 01

3120 5A 5A CD 4A Cl C5 E5 D5 CD 4A Cl 70 CD F5 Cl C2

3130 28 Cl Dl El Cl E5 D5 CD 4A Cl 7E B8 C4 68 Cl CD

3140 F5 Cl C2 37 Cl Dl El C3 22 Cl 78 E6 B4 A7 EA 52

3150 Cl 37 79 17 4F 78 17 47 C9 CD 81 CO 7C CD 74 Cl

3160 7D CD 74 Cl CD 73 CO C9 F5 CD 59 Cl 78 CD 74 Cl

3170 CD 73 CO Fl F5 CD 7C Cl Fl C3 80 Cl IF IF IF IF

3180 E6 OF C6 30 FE 3A DA 75 CO C6 07 C3 75 CO 47 CD

3190 57 CO CD 57 CO OE 10 CD 59 Cl 78 FE 41 7E CA B2

31AO Cl CD 74 Cl CD 73 CO CD F5 Cl C8 OD CA 95 Cl C3

31BO 9A Cl E6 60 C2 BD Cl CD 73 CO C3 A7 Cl 7E E6 7F

31CO CD 75 CO C3 A7 Cl CD 57 CO EB CD 81 CO 7E CD 74

31DO Cl 3E 2D CD 75 CO CD 8B CO FE 2F C8 FE OD C2 E7

31EO Cl CD 81 CO C3 D6 Cl EB 21 00 00 OE 02 CD 5F CO

31F0 73 23 C3 CD Cl 7B 95 C2 FC Cl 7A 9C 23 C9 00 00
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VECTOR 1 MONITOR V 1.2
B,C,D,E Patches

0090 INIT
Option B

MVI A,03H 0090 INIT
Option C

MVI A,OCEH

0091 OUT 10H 0091 OUT 03

0092 MVI A,11 H 0092 MVI A,27H

0093 OUT 10H 0093 OUT 03

P 0600 P 0600

0600 PTCN PUSH PSW 0600 PTCN PUSH PSW

0610 PTLOP IN 10H 0610 PTLOP IN 03

0620 ANI 02 0620 ANI 01

0630 JZ PTLOP 0630 JZ PTLOP

0640 POP PSW 0640 POP PSW

0650 OUT 11H 0650 OUT 02

0660 RET RETURN 0660 RET RETURN

P 0740 P 0740

0740 RDCN IN 10H 0740 RDCN IN 03

0750 ANI 1 0750 ANI 02

0760 JZ RDCN 0760 JZ RDCN

0770 IN 11H 0770 IN 02

0780 ANI 7FH 0780 ANI 7FH

0790 JMP PTCN 0790 JMP PTCN

Option D Option E

0600 PTCN JMP OC700H P 0600

0620 ANI 01 0600 PTCN PUSH PSW

0630 JMP RDCN 0610 PTLOP IN CONC

0640 POP PSW 0620 ANI 80H

0650 OUT 02 0630 JZ PTLOP

0660 RET RETURN 0640 POP PSW

0650 OUT COND

0660 RET RETURN

P 0740 P 0740

0740 RDCN IN ODOH 0740 RDCN IN CONC

0750 ANI 81H 0750 ANI 40H

0760 JNZ RDCN 0760 JZ RDCN

0770 IN 0131H 0770 IN COND

0780 ANI 7FH 0780 ANI 7FH

0790 JMP PTCN 0790 JMP PTCN

Option B - MITS 2 SIO
Option C - IMSAI SIO 2
Option D - Polymorphic Video Interface
Option E - Processor Technology 3 P + S without inverted status bits
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Next, the subroutine reads the status of port 00
into the accumulator and ANDs the contents with the
byte 80. If the result is not zero the processor loops
back to the INPUT command and repeatedly checks the
input port for an 80 input code. When the code appears,
the value of the accumulator stored in the stack is re-
loaded into the accumulator and then output on port
01 to a pointer or the terminal. Lastly, the subroutine
returns from the subroutine to the main program at
location CO I1 where the accumulator is now loaded
with the ASCII code for an asterisk (2A) and subrou-
tine PTCN at location C075 is again called to output
the character and then go back to the main program.

After the * is printed or is visible on the terminal,
another subroutine, RDCN, is called at location C08B.
This subroutine inputs the keyboard status on port 00
to the accumulator and ANDs the contents with 01 (a
mask word), which is used to check for the keyboard
strobe signal, indicating valid data on the port. The
subroutine loops until the strobe is detected and then
an input command loads the keyboard data from port
01 into the accumulator and then strips off the MSB
by ANDing the word with 7F. Next, the subroutine
jumps to the PTCN subroutine to put the character
back on the screen and then return to the main program
at location C019 where the program status word is saved
on the stack. Then the SPCE subroutine is called to
load the accumulator with the ASCII code for a space
(20), print it on the terminal using the PTCN routine,
and then return to the program at location CO1D where
the PSW data are restored with a POP command.

As you can see so far, the monitor program is noth-
ing more than a bunch of subroutines held together
by a master list or executive program that knows when
to call the right subroutine. But let's continue the
examination.

At this point, the character is in the accumulator
and displayed on the terminal. The next step is for the
computer to determine what the character is. To find
out, a series of compare operations are performed us-
ing immediate data to see if the entered character is a
command character or just an arbitrary character. If it's
a command character the program branches to the ap-
propriate one of the following subroutines: EXEC,
CINR, COUTR, DISP, PGM, TMEM, or DISP, de-
pending on the character entered. When none of the
subroutines is called, the character entered is not a
command character so the main program loops back to
START and waits for a command character.

Once one of the command characters is detected,
the program branches to the respective subroutine. The
G causes -the program to jump to location C04E which
calls the AHEX subroutine at location C057. The AHEX
subroutine first loads the H and L CPU registers with
0000, then loads the C register with 04, and then calls
the RDCN subroutine to read a byte of data from the
terminal. Once the byte is entered (a key is pressed),
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the routine reads it into the accumulator, displays it on
the terminal, and returns to the AHEX subroutine at
location C05F. The DAD H (double add) instruction
is the equivalent of shifting the contents of the H and
L one bit position left. So, four consecutive DAD H
commands shifts the value in the H and L registers four
places left. Next the ASCII value for the letter H (48)
is subtracted from the accumulator (which still con-
tains the byte of data from the terminal) and then com-
pares the result with the number 10 (decimal). If the
value of the number in the accumulator is smaller than
the number subtracted the program continues to the
SUI 7 instruction, subtracts the number seven to con-
vert the difference value into hex, and then jumps to
ALF if a carry is present. When the number in the ac-
cumulator is larger than the number subtracted the
program branches to ALF, which is used to pack the
hex digits two to a byte.

The contents of the H and L registers were origi-
nally set to zero so the registers can serve as holding regis-
ters. First the L register is added to the accumulator
(which is holding the stripped character) and then the
result is moved back into the L register. Next, the C regis-
ter is decremented (the C register originally held the count
of 4 to make sure only four address digits are accepted)
and if the register is not zero the program loops back
to AHEI to read in another byte and perform the strip-
ping routine. However, if the result of the DCR opera-
tion makes the contents of the C register zero, the pro-
gram breaks out of the loop and exchanges the contents
of the H and L registers with the contents of the D and
E registers. So now the four hex address digits are in
the D and E registers.

After all four characters are entered and registers
swapped, the program sequences to SPCE (location
C073) which is used to print a space and then return
from the AHEX routine to the main program at the ad-
dress C051. The subroutine returns to another XCHG
command to put the four address digits back into the
H and L registers since the XCHG command used back
in the AHEX subroutine is used with other routines to
perform specific jobs. Next, the program loads the D
and E registers with the return address of START at
COOB so the program that will be executed due to the
G command will finish by returning the computer back
to the monitor mode. After the D and E registers are
loaded, their values are stored in the stack with a PUSH
command and then the program counter is loaded with
the contents of the H and L registers so that the pro-
gram starting at that address can be executed.

When the program finishes and the computer re-
turns to the monitor mode another command key can
be pressed. If the D key is pressed, for instance, the
monitor program goes to subroutine DISP at location
C 18E. This subroutine starts by first saving the con-
tents of the accumulator into register B and then sub-
routine AHEX is called to load the next four hex char-
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acters into the H and L registers and then exchange the
contents of the H and L registers with those of the D and
E registers. Next, the subroutine goes back to the main
subroutine which says go back and load another four
characters into the new H and L registers. After the
next four characters are entered, the control is returned
to the DISP subroutine at address C195.

The next part of the DISP routine loads register
C with the number 16 and then calls subroutine PTAD
which in turn calls another subroutine-CRLF which
provides carriage return and line feed to begin a new line.
Next the PTAD routine loads the accumulator with the
contents of H and then calls yet another subroutine-
PT2-which stores the contents of the status word in the
stack and calls another routine, BINH, which first shifts
the accumulator right four bits and then restores the
ASCII code to the stripped character and then jumps
to PCTN to print the character. After the character is
printed, the subroutine returns to the PT2 subroutine,
pulls the status word from the stack, and then jumps
to the BINL subroutine to print the other half of the
word held in the H register. Then the subroutine re-
turns to the PTAD routine at address C160. Now, the
contents of the L register are transferred to the accu-
mulator and are then converted back to ASCII and
printed and then another subroutine SPCE-is called.

Subroutine SPEC prints a space and then returns
to the PTAD subroutine, which, in turn, executes an-
other return command to bring program execution
back to the DISP subroutine at address C19A, which
transfers the contents of B back to the accumulator.
Now, the contents of the accumulator are compared
with the character A so that the condition bits in the
PSW can be set and then the contents of the memory
location pointed to by the H and L registers is loaded
into the accumulator. The condition bits control the
next instruction-JZ command which will cause the
program to jump to the ASCD subroutine if there is a
character match for the A monitor command. Other-
wise, the program will continue and call subroutine
PT2 to print out the ASCII representation of the two
4-bit halves of the byte held in the accumulator.

Since we started with the assumption that a D key
was pressed, there was no match for A and subroutine
PT2 is called, the characters are printed, and then the
PT2 routine goes back to the DISP routine at address
CIA4 where it executes a call command to the print
space subroutine and then returns where another call
is executed to subroutine BMP. This subroutine loads
the accumulator with the contents of register E and
subtracts from that the value held in the L register and
if the result is not zero the program jumps to GOON.
GOON increments the H register and then returns to the
DISP subroutine at address C1AA. If the zero bit is set
the program is finished and returns to the monitor pro-
gram. However, if the zero bit isn't set the program
decrements the contents of the C register and if the zero

bit is then set the program jumps to subroutine ENT1,
otherwise the program jumps to LP2.

Subroutine ENT I loads register C with 10 and
then calls subroutine PTAD to provide a carriage re-
turn and line feed as well as printing the address held
in the H and L registers. Next, the program loops
through the memory contents again in the new set of lo-
cations and continues looping until all the specified
memory locations are printed on the screen.

As mentioned earlier, the DISP program checks
for an A key since both the A and D command starts
with the same. However, when the command key is the
A key, the DISP subroutine diverts to the ASCD sub-
routine, which starts at address C 1 B2. When the pro-
gram jumps, the accumulator contains the first byte of
data as addressed by the starting address held in the H
and L registers and the final address is held in the D
and E registers. The first instruction of the ASCD
subroutine masks the byte in the accumulator to elimi-
nate any control codes so they will not be output. If
the result is nonzero the character is not a control char-
acter and can be handled by the program starting at
NCON. This part of the program transfers a data byte
at the memory address specified by the H and L regis-
ters into the accumulator, masks the data for a 7-
bit ASCII code, and then calls another subroutine
PTCN to print the character on the terminal and then
return.

After returning, the subroutine loops to another
subroutine BMP, that checks to see if the pointer ad-
dress in the H and L registers is the same as the ending
address held in the D and E registers. When the ad-
dresses match the program returns to address C 1 AA
and performs another return or carry bit set back to
the main program. If the addresses don't match, reg-
ister C is decremented and if it's nonzero the program
loops again to C191 to load in the next byte and then
output it. When the count in the C register reaches zero
the program breaks out of one loop and goes to ad-
dress C195 where C is reloaded with 16, the current
contents of the H and L registers are printed out, and
then the next byte of data is ready for outputting. This
continues (the use of the two loops) until the count in
H and L matches the value in D and E.

These are just three of the nine command choices
the monitor program can handle. As you can see the
program makes extensive use of conditional jumps,
subroutine calls, and subroutines in general. In fact,
the main program actually extends only from address
0000 to C04B. All the other program lines are subrou-
tines. This monitor program exemplifies many of the
programming techniques used for microprocessor and
even larger computer programming.

Once you have some sort of monitor program you're
ready to write your own applications programs, or pur-
chase already written programs to use on the computer.
However, loading programs into the computer by typ-
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ing the printed listing is quite tedious, and many soft-
ware vendors offer programs in paper-tape, cassette,
floppy-disc, and even ROM form. Often, monitor pro-
grams permit you to load in other, more complex pro-
grams that let you write programs using English-like
statements.

Assembly-language programming is fine for many
applications, but when programs of several hundred
or several thousand lines are put together, assembly
language restricts the use of the program to only a pro-
cessor that uses the same instruction mnemonics. To
make the programs more interchangeable, high-level lan-
guages such as BASIC, FORTRAN, COBOL, PASCAL,
APL, and others are used. Programs written in these
English-like languages can be "transported" from one
computer to another since each computer responds to
the same instructions through a special translator pro-
gram written for the specific computer.

BASIC is by far the most popular language used on
microcomputer systems. However, there are many dif-
ferent forms of BASIC available-from the so-called
TINY BASIC that requires only several thousand bytes
of memory to the Extended Disk BASIC, which requires
about 20 kbytes. Extended Disk BASIC, developed by
Pertec for their Altair 8800 microcomputer, provides
you with an interpreter program that reads instructions
and then directs the computer to execute the proper
sequence of 8080 machine instructions for each BASIC
command.

Altair BASIC includes many useful diagnostic and
editing features to ease program development. The Ex-
tended version also contains features to handle large
disk files and input/output routines. Before you can
program in a language like BASIC, though, you must
learn the command set and then how to take advantage
of the various instructions. There are many fine books
that provide helpful, detailed explanations of how
BASIC instructions work and how to write programs in
BASIC.

There are, of course, many fine points to all the in-
structions in the BASIC command set, and they cannot
be covered in the space of this book. A summary of
most of the instructions is provided in Table 8.6. For
exact details of the programming of computers in
BASIC, read one of the many books that deal with just
programming; some of them are listed in Appendix A.
However, there are some procedures that must be
followed if Disk BASIC is to be used on the Altair
computer system. These procedures include loading it
into the computer and initializing it for the system
configuration you have. To load BASIC into the com-
puter, you must define the system and make sure it can
support the language. The system configuration assumed
to be available is a CPU with 32 kbytes of RAM, a
cassette interface, a dual floppy-disk system, a serial
I/O port and CRT terminal, and a parallel I/O port and
printer.
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The first step is to determine in which form the
bootstrap program will be; PROM is the easiest since
all that must be done is to put the programmed mem-
ory onto the PROM card, set up the front-panel address
switches to access the program, and hit the RUN switch.
The PROM contains a bootstrap program that tells the
disk how to transfer data to the computer's memory
and then the loaded program takes over and controls
the computer and the disks so that more complex oper-
ations can be performed. Once the BASIC program is
loaded it must be initialized in the system. The first
thing that happens is an output from the computer once
the program is loaded asking:

MEMORY SIZE?

You must respond by typing on the terminal the total
amount of RAM available to the system; in the example
system then, 32k would be typed, followed by a car-
riage return. Next, the computer will ask another
question:

HIGHEST DISK NUMBER?

You must type back the highest physical disk address
in the system, followed by a carriage return. If no num-
ber is typed in, the default number is 0. BASIC next
asks how many files are to be OPEN at one time in the
program. This number includes both random and se-
quential files. If a CR is typed, the default is zero. Each
file allocated requires 130 bytes of RAM for buffer
space.

HOW MANY FILES?

Finally, BASIC asks how many random files are to
be OPEN at one time. The amount of memory allocated
is the answer *257. This memory space is used to keep
track of the location on the disk where the files reside.

The paper-tape or cassette versions of the disk boot-
strap can be used to load the disk if the bootstrap PROM
is not used. Depending on the medium selected and the
type of interface available (serial, parallel, or ACR),
the program necessary to load the bootstrap will change.

In the BASIC package supplied by Pertec is a util-
ity program called PIP that can be used to perform
such common functions as printing directories, copy-
ing data from one disk to another, and even initializing
the disks before data are stored on them. Some of the
commands the utility program has (LIS, DIR) require
that one <file number> be configured during initiali-
zation dialog. This is done by answering the HOW
MANY FILES? question with a number greater than
zero. Once the BASIC disk has been loaded and initial-
ized, PIP can be accessed by typing the following:

RUN "PIP" <carriage return>
(PIP will then type)
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Table 8.6 Commands Available in Extended Disk BASIC

MITS BASIC includes a number of features that make it well-
suited for business programming.

• Print Using: The PRINT USING command makes report genera-
tion easy by providing precise control of the formatting of each
line. You may specify tabbing, spacing, rounding of numbers, in-
sertion of commas and decimal points, fixed or floating currency
signs, and minus signs.

• Numeric Storage: MITS BASIC allows numbers to be stored in
any of three formats:
-Integer, with a range of -32,768 to +32,767.
-Single Precision, with six significant digits and an exponent of
±1038.

-Double precision, with sixteen significant digits and an expo-
nent of ± 1038.

UNLOAD Takes a disk off line.
FILES Lists disk directory.
SAVE Saves a program in disk.
LOAD Loads a program from disk to

memory.
MERGE Merges a program on disk with

a program in memory.
RUN Loads and executes a program.
KILL Deletes a file from disk.
NAME Renames a disk file.
DSKF Returns the amount of free

space on a disk.

PROGRAM EDIT COMMANDS

• String Operators: MITS BASIC features a complete set of charac- LIST List a program on the CRT.

ter string operators to allow the entry and editing of alphanu-
meric information with a minimum of programming effort.
These operators include:

LLIST
RENUM
EDIT

List a program on the printer.
Renumber a program.
Edit and change lines in a

LEFT$ Returns characters from the left side of a string.
RIGHT$ Returns characters from the right side of a string.

DELETE
program.
Delete lines in a program.

MID$ Returns characters from the middle of a string.
INSTR Finds a string within another string

FILE COMMANDS
.

LEN Returns the length of a string.
STR$ Converts a number to a string.
SPACE$ Returns a string composed of spaces.
STRING$ Returns a string of repeated characters.
CHR$ Returns a one-character string of an ASCII code.

OPEN
INPUT

PRINT

Opens a data file.
Reads from the CRT keyboard or
sequential file.
Writes to the CRT or sequential
file.

+ Used to concatenate strings. EOF
GET

Set to TRUE at end of file.
ndom fileRe f m ad

In addition, MITS BASIC features: PUT
.a ro ras

Writes to a random file.
diff i d ior enter ng an mo y ng-A comprehensive text editor

programs. INTRINSIC FUNCTIONS

-Error trapping.
-Disk data files (sequential and random access).
-Read after write and head position verification on disk

I/O

ABS
ASC
ATN
LOG

Absolute value.
ASCII code.
Arctangent.
Natural log.

RND Random number.
ARITHMETIC OPERATORS TAN Tangent.

t Exponentiation
Multiplication

INT
HEX$

Returns integer
Decimal to hexadecimal

/ Division conversion.

\ Integer Division VAL Returns the value of a numeric

MOD Modulus Arithmetic string.

+ Addition CINT Precision conversion-integer.

- Subtraction CSNG
CDBL

Precision conversion -single.
Preci ion conver ion-double

RELATIONAL OPERATORS COS

.s s
Cosine.

EXP "e" to the power
= Equal

FIX
.

Truncated integer
< > Not equal

SIN
.

Sine of a number
< Less than

SQR
.

Square root
< = Less than or equal to

SGN
.

Returns sign of a number
> Greater than

OCT$

.
Decimal to octal conversion

> = Greater than or equal to
.

LOGICAL OPERATORS PROGRAMMING COMMANDS

AUTO DEFUSR
NOT Negation

CLEAR DIM
AND Disjunction

CONSOLE END
OR Conjunction

CONT ERASE
XOR Exclusive OR

DATA ERL
EQV Equivalence

DEF ERR
IMP Implication

DEFDBL ERROR

DEFINT FOR-NEXT
DISK COMMANDS DEFSNG FRE

MOUNT Brings a disk on line. DEFSTR GOSUB
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Table 8.6 (cont 'd) Commands Available in Extended Disk BASIC

GOTO POKE TRON WAIT
IF-THEN-ELSE POS USR WIDTH

INP PRINT VARPTR

INPUT PRINT USING
LET READ CONTROL CHARACTERS

LINE INPUT REM Control/A Edit the current input buffer.
LIST RESTORE Control/C Stop program execution.
LLIST RESUME Control/H Blank previous character typed

LPOS RESUME NEXT (backspace).

LPRINT RETURN Control/I Tab.

ON ERROR GOTO SPC Control/O Toggle print output on/off.

ON-GOSUB STOP Control/S Suspend program execution.

ON-GOTO SWAP Control/Q Resume program execution.

OUT TAB Control/U Erase the current input buffer.

PEEK TROFF Control/X Same as Control/U

At this point PIP is ready to accept commands. To
exit PIP, type a carriage return in response to the
prompting asterisk. To initialize a disk on drive zero,
just type INIO immediately following the asterisk. PIP
will type DONE when it is finished. Any disk number
can, of course, be substituted in this example and PIP
will reformat the disk in that drive. Remember, though,
any files on that disk will be lost.

Giving PIP the command *DIR <disk number>,
prints out a directory of the files stored on the specific
disk. The name of each file is printed along with the
file's "mode" (S for sequential, R for random) and the
starting track and sector number of the first block in
that file. The command SRT disk number prints out a
sorted director of file names. An LIS command can be
used to list the contents of a sequential data file on a
specified disk. The format of the LIS instruction is

LIS <disk number>, <file name>.

A copy instruction is available to duplicate data held
on disk, thus providing a back-up copy in case of dam-
age or a copy for someone else to have. This instruction
is set up as follows:

COP <old disk number>, <new disk number>.

Before the actual copying is done, PIP prints out the
following message:

FROM <disk number> TO <disk number>.

Typing Y followed by a CR causes execution to proceed.
Any other response aborts the command, thus prevent-
ing accidental loss of data. Another command, DAT,
causes a particular sector of the disk to be dumped out
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in octal. When the DAT <disk number> command is
issued, PIP asks for the numbers of the track and sector
to be dumped. One other instruction on the disk's PIP
program, CNV, is used to update older versions of the
MITS BASIC to the latest version. Also provided on
the system disk containing BASIC is a game program
for playing STARTREK, a game based on the science
fiction television series of the same name that originated
about 10 years ago.

Now That You Have BASIC, What Do You
Do With It?

Assuming that you've been able to get your system
together and running, you're ready to start writing pro-
grams to solve mathematical problems, do stock market
analysis, perform general accounting routines, play
games, or process data for almost any other purpose.
To perform actual physical control of motors, lamps,
and other high power devices, special interface circuits
must be developed to handle the power demanded by
these loads and to prevent damage to the delicate com-
puter circuits if some of that power should try to feed
back. The realm of input/output interfaces to the world
is so large, another book would barely scratch the sur-
face of the topic. Several books that attempt to show
ways to connect the computer to external devices are
listed in Appendix A. Pertec also offers a family of inter-
face cards that contain relays and special conversation
circuits to change the digital data words into analog
signals or vice versa. These process control interfaces
and control cards can be programmed either via as-
sembly language or BASIC to do the desired jobs.



CHAPTER 9

Interfacing the Microcomputer to
Real- World Applications

The basic computer system described in its various
sections consists of the cabinet with control panel, the
central processor, an assortment of memory boards
(ROM and RAM cards), some serial and parallel I/O
cards, a bulk-memory interface (cassette or floppy-disk
controller and deck or drive), a CRT terminal or print-
ing terminal, and possibly a printer. For most applica-
tions the system described is a complete computer sys-
tem and probably has a cost of about $6000. However,
the computer can just do what it was built for, and that
is compute. It has no ability to control anything ex-
ternal to it such as a motor, lamp, alarm, or factory-
all it can do is accept data in digital form, manipulate
the data (process them), and print out or display the
answer.

For the computer to really do some other types of
operations, it must be given the "muscle" to handle
high-power loads such as the motors or lamps. The mus-
cle consists of special-purpose I/O boards that contain
power-boosting circuitry to amplify or translate the
computer's logic signals to the powerful levels needed
to open and close relay contacts, or convert the com-
puter words into signals such as synthesized speech.
There are special circuits that permit computers to con-
vert analog signals into digital form, store the digital
coded equivalent, manipulate it, and then output the
code to another circuit that does the reverse conversion-
from digital to analog.

These special interface boards are made by many
manufacturers and it is rare that two boards perform ex-
actly the same function. Several boards that will be ex-
amined to illustrate what manufacturers can do to get
information into or out of the computer include the
88-AD/DA analog I/O card and the 88-PCI process
control interface, both offered by Pertec (Fig. 9.1).

Bring Analog Signals into the Digital World

The 88-AD/ DA board for the S-100 bus is a com-
puter controlled subsystem that can accept analog sig-
nals from up to eight sources simultaneously, convert
the signals into 8-bit digital equivalents, and then feed

the equivalents to the computer's CPU, memory, or
another I/O port (Fig. 9.2). The board can also work
in reverse. It contains two circuits that can accept an
8-bit word from the computer bus and change that word
into an analog signal. The specialized circuits used to
perform the conversions are appropriately called analog-
to-digital converters (a/ d's) and digital-to-analog con-
verters (d/ a's).

Signals fed into the board from outside sources are
analog signals that usually vary in amplitude with time.
For the a/ d to handle them properly, the signals may
have to be adjusted (conditioned) to meet the input re-
quirements of the conversation system and minimize
any distortion. Once conditioned, the analog signals are
first fed into a circuit called a multiplexer, which is like
a rapidly rotating eight-position switch, similar to the
channel selector on a television set. As the multiplexer
steps through its eight positions, each analog input, in
turn, appears at the input to the next part of the card-
the sample-and-hold amplifier (s/ h).

The s/ h is like a temporary camera-each time a new
input appears and a special signal is received by the s/ h
control line, the circuit takes a "snapshot" of the value
of the signal. This temporarily "freezes" the input to
the a/ d converter, thus preventing the converter from
seeing more than one value at a time. After the signal
is held at a fixed value, the a/ d converter receives a start
signal to begin the actual conversion of the signal value
into digital form. When the converter finishes its job it
sends a signal back to the computer, telling the CPU
that the conversion is finished and the digital word is
ready for transmission over the computer's bus to the
CPU, memory, or 1/0 device. The entire process, from
the time the multiplexer selects a channel to the time
the converter says it finishes a conversion, takes ap-
proximately 10 to 12 µs-a mere wink of an eye.

The reverse process, performed by the two d/a's, is
simpler. All eight bits of data are first fed from the com-
puter bus to a 6820 PIA. When given a signal from the
CPU the PIA will accept the data and feed them through
to the d/a. The d/a immediately converts the digital
word into analog form (a voltage) and feeds it out to
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(A)
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(B)

Fig. 9.1 Performing analog input and output, the 88-AD/DA board (a) handles up to eight inputs and delivers two outputs. Capable of
controlling eight separate high-power devices, the 88-PCI handles loads of up to 1 A at 120 V ac (b). (Courtesy Pertec)

the "real" world. This process is even faster than the To access the board once it is plugged into the bus,
previous sequence-the analog equivalent is available address lines A3 to A7 provide 32 possible address se-
a microsecond or so after the 8-bit digital word appears lections in increments of eight. Address line A2 provides
on the converter's input. the selection signals for the particular PIA, thus de-
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Fig. 9.2 Block diagram of the 88-AD/DA board.

termining whether an a/d or d/a operation will take
place. One PIA is used solely for a/d operations and the
other PIA services both d/a converters.

Address lines AO and Al select which of the three
internal registers of the PIA gets accessed by the com-
puter once A2 selects the desired PIA (Table 9. 1).

For each PIA, four addresses are used to select the
desired register (see Table 9.2). The board address is
referred to as the base address and then an offset of 0,

Table 9. 1 Internal Register Selection Chart for the 88-AD/DA

Control /Status Registers

Al AO A-bit 2 B-bit 2 Location Selected

0 1 1 X Data channel register A
0 1 0 X Data direction register A

0 0 X X Control/status register A

1 1 X 1 Data channel register B
1 1 X 0 Data direction register B
1 0 X X Control/status register B

X = Don 't care.

Table 9.2 Register Address Definition Chart for the 88-AD/DA

Address Required Location Selected

Base address +0 Control status register A

Base address + 1 Data direction register A

Base address + 1 Data channel register A
PIA-U

Base address + 2 Control/status register B

Base address + 3 Data direction register B

Base address + 3 Data channel register B

Base address + 4 Control /status register A

Base address + 5 Data direction register A
Base address + 5 Data channel register A

PIA-T
Base address + 6 Control/status register B

Base address + 7 Data direction register B

Base address + 7 Data channel register B

1, 2, or 3 is used to select one PIA's registers, and an
offset of 4, 5, 6, or 7 is used for the other PIA. When
the PIA is selected, the data bus interface lines (DOO to
D07 and DI¢ to D17) are set up as inputs or outputs.
Inputs are used for an a/d operation and outputs for a
d/a operation.

There are many jumper options on the board that
have to be selected before the board is installed:

1. The desired output voltage swing of the d/a. con-
verters can be set for 0 to 10 V, -10 to 0 V, or
-10 to 10 V.

2. On-board timers for the a/d converter and sam-
ple-and-hold amplifier must be set if software
is not used to control all a/d operations.

3. The comparator output of the a/d converter
must be coupled to the rest of the subsystem,
with or without any feedback.

4. The board address must be selected by switch
settings, not jumpers.

For an input to the computer to take place, address
lines AO to A7 should be set so that the board is selected
by the desired address sent over the address lines of the
main bus. At the same time both the SINP and SOUT
lines of the bus must be HIGH along with the A2 line
to select the a/d converter. This sequence also sets the
data bus drivers so that they will deliver a digital word
to the bus, starts the a/d conversion process, and be-
gins a WAIT state (this tells the computer to idle for
one instruction cycle). At the end of the WAIT state
the converter signals that it has finished and delivers
its digital output to the PIA, which, in turn, sends the
word to the computer's data-in bus. The process for a
d/a operation is similar-the address must be selected;
however, only SO UT must be HIGH, thus telling the se-
lected PIA that data will be sent from the data bus to
the PIA and on to the selected d/a converter.

Before the 88-AD/DA board is installed, switches
and jumpers should be set for the desired configura-
tion of the application. The board address, the analog
output range, the sequencing of the sample-and-hold
amplifier (hardware or software controlled), and the
sequencing of the a/ d converter must all be set. Hardware
control is normally used to keep the processor free for
other duties. For highest speed operation, the sample-
and-hold amplifier can be bypassed; however, accuracy
might suffer for some input signals. Unused multi-
plexer inputs should be grounded due to the high input
impedance of the sample-and-hold amplifier. This will
prevent erroneous voltage readings. Cable layout is very
critical since noise and other types of electrical inter-
ference can cause incorrect readings. The longer the
cables, the more prone to interference the system will
be. A full schematic of the board is in Appendix C.

After the board is physically set up and plugged into
the bus, the next step is to develop the software that will
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control the board and transfer data back and forth. Reg-
isters inside the PIAs must be set up to control the flow
of data back and forth. The control status and data di-
rection registers must be initialized. The DDRs tell the
PIA whether to set up the 1/0 lines as inputs or outputs.
The C/S registers control the function of the CA1, CB1,
CA2, and CB2 signals and determine whether to write
to the DDR or the data channel register.

To write the DDR, bit 2 of the C/S register must
be set to zero; this is accomplished by writing a zero to
the C/ S register of the selected PIA section (A or B) in
the selected PIA. When writing to section A of PIA-U,
zero's are written to the base address (C/S register A);
or when writing to section B, zero's are written to the
base address + 2 (C/S register B). For writing to PIA-T
section A, zero's are written to the base address + 4(C/ S
register A); or for section B, zero's are written to the
base address + 6 (C/S register B).

Once the zeros are entered, the associated DD R
can be accessed and modified. When writing to PIA-U,
base address + I selects DDR-A and base address + 3 se-
lects DDR-B. For PIA-T, base address + 5 selects
DDR-A and base address + 7 selects DDR-B. Section A
of PIA-U accepts the digital output of the a/d converter
and must thus be set up as an input port; section B out-
puts address information to the multiplexer and must
be set up as an output port. Sections A and B of PIA-T
deliver the digital words to the d/a converters and must
therefore be set up as output ports.

To actually do the initialization of PIA-U, zeros
must be written to section A and ones to section B. For
PIA-T, ones must be written to both DDR registers.
After both PIAs have their DDRs initialized, the C/S
registers can be set up for their final operating form.
Bit 2 of the C/S registers must be set to one; this will
move the addressing from the DDRs to the data channel
registers. The program shown in Fig. 9.3 is a sample
initialization program and assumes the board is ad-

Table 9.3 Interrupt Input Control Definition for the 88-AD/DA

Control/Status Register

A (B)-bit 1 A ( B)-bit 0
Interrupt Input

CA1 ( CB1)

0 0 Active negative
transition

0 1 Active negative
transition

1 0 Active positive
transition

1 1 Active positive
transition
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Machine Language

Location Contents Comments Basic

000 076 1 f Load Accumulator
1 000 with Os 10 OUT 64,0
2 323 output 20 OUT 65,0
3 100 30 OUT 66,0
4 323 output 40 OUT 68,0
5 101 50 OUT 70, 0
6 323 output 60 OUT 67, 255
7 102 70 OUT 69, 255

010 323 output 80 OUT 71, 255
1 104 90 OUT 64,44
2 323 output 100 OUT 66,44
3 106 110 OUT 68,44
4 076 Load Accumulator 120 OUT 70,44
5 377 {with is
6 323 output

7 103

020 323 output
1 105
2 323 output

3 107
4 076 Load Accumulator
5 054 twith 0548
6 323 output

7 100

030 323 output
1 102

2 323 output

3 104

4 323 output

5 106

Fig.9.3 Program showing a sample initialization
of the 88 -AD/DA board.

dressed at location 100x. The two lowest order bits, 0
and I of the C/S register, are used to control the inter-
rupt input lines CAI and CBI (Table 9.3). In control/
status registers A and B, bit 0, when HIGH, is used to
enable the interrupt request (IRQA or IROB). If inter-
rupts are not required, bit 0 should be set LOW. Bit 1

Interrupt Flag Control /Status
Register

A ( B)-bit 7
MPU Interrupt Request

IRQA (IRQB)

Set HIGH on negative tran - Disabled- IRQ remains HIGH
sition of CA1 (CB1)

Set HIGH on negative tran - Goes LOW when the interrupt flag bit, control /status
sition of CA1 ( CB1) register A (B) bit 7 , goes HIGH

Set HIGH on positive tran - Disabled- IRQ remains HIGH
sition of CA1 (CB1)

Set HIGH on positive tran- Goes LOW when the interrupt flag bit control /status
sition of CA1 (CB1 ) register A (B) bit 7 , goes HIGH

Note 1: The interactions of control/status register A, CA1 and IRQA are identical to the interactions of control/status register B, CB1,
and IROB.

Note 2: The interrupf flag bit for the appropriate control /status register , bit 7, is cleared by an MPU read data operation.
Note 3: If control/status register A ( B), bit 0 , is LOW when the interrupt occurs ( interrupt disabled ) and later goes HIGH, IRQA (IRQB)

occurs after control/status register A ( B), bit 0 , is written to a 1.
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Table 9 .4 Control Line Definition for the 88-AD/DA

Control/Status Register
Interrupt Input

The S-100 Bus Handbook

Interrupt Flag Control/Status
Register MPU Interrupt Request

IRQA (IRQB)A (B)-bit 4 A (B)-bit 3 CA2 (CB2) A ( B)-bit 6

0 0 Active negative
transition

0 1 Active negative
transition

1 0 Active positive
transition

1 1 Active positive
transition

Set HIGH on negative transi- Disabled-IRQ remains HIGH

tion of CA2 (CB2).

Set HIGH on negative transi - Goes LOW when the interrupt flag bit control /status
tion of CA2 register A (B) bit 6, goes HIGH

Set HIGH on positive transi - Disabled-IRQ remains HIGH
tion of CA2 (CB2)

Set HIGH on positive transi- Goes LOW when the interrupt flag bit control/status
tion of CA2 (CB2) register A (B) bit 6, goes HIGH

Note 1 : The interaction of control /status register A, CA2 and IRQA is identical to the interaction of control/status register B, CB2 and

IRQB.
Note 2: Control/status register A (B)-bit 5 is LOW.
Note 3: The interrupt flag bit for the appropriate contol/status register, bit 6, is cleared by an MPU read data operation.
Note 4: If control/status register A (B), bit 3, is LOW when an interrupt occurs (interrupt disabled) and later goes HIGH, IRQA (IRQB)

occurs after control/status register A (B) is written to a 1.

of the C/S register determines the active transition of
the interrupt input signals. When bit 1 is LOW, the inter-
rupt flag (bit 7) is set HIGH on a HIGH-to-LOW (nega-
tive-going) signal transition; and if bit 1 is HIGH, bit
7 is set HIGH on a LOW-to-HIGH (positive-going)
signal transition.

The a/d converter output consists of the eight data
bits as well as a signal line that signals when the con-
verter has completed a conversion. This signal is fed to
the CAI line of the PIA. Thus, bit 1 of C/S register A
(base address + 0) should be set LOW to make CA 1
LOW active. Since there are no interrupts in this ex-
ample, bit 0 should be set LOW.

Bits 3, 4, and 5 of the C/S registers are used to
control CA2 or CB2. If bit 5 is LOW, CA2 and CB2
function as interrupt input lines and are similar in op-
eration to CAI and CB1 (see Table 9.4). When bit 5
is HIGH, CA2 and CB2 serve as peripheral control
output lines. As output control lines, C/S register bits
3 and 4 determine the exact characteristics of the lines
(see Tables 9.5 and 9.6). CB2 of PIA-U enables the tim-
ing sequence on the board to control the sequencing
of the s/h amplifier and the a/d converter. To use CB2
as a control line, the C/S register B (base address + 2)
bit 5 is set HIGH, bit 4 is set LOW, and bit 3 is set HIGH.

Some sample programs, shown in Figs. 9.4 and 9.5,
provide both hardware and software control examples
of timing sequences. Normally, hardware control is used.
However, software control does permit adjustments
without turning off the system to modify the circuit. The
program of Fig. 9.4 uses hardware control via the on-
board timing circuits to provide the data settling time.
The program in Fig. 9.5 includes the extra steps for soft-
ware control of the sequencing. Output programs, which
are generally simple, merely require the computation
and the output. Sometimes a minimum delay time be-
tween new outputs from the d/a converters is desirable.
To do this, the program must be designed to compute

the first value and store it in an available register in
memory or in the processor. Then the other value is com-
puted and stored in another location. Since data cannot
be output to both d/a converters simultaneously, the
first value is initially retrieved and output to one chan-
nel. Then the second value is retrieved and then sent
out to the other channel. This results in a minimum
time delay between channel outputs.

Applications for a multiple function board such
as the 88-AD/DA are unlimited, but just for an exam-
ple, let's examine how the board can be used to create
video displays on either a monitor that has X and Y
inputs or an oscilloscope (Fig. 9.6). By using both d/a
converters to feed the display inputs, pictures can be
drawn on the screen by feeding the proper digital infor-
mation to the d/a converter inputs. The general scheme
used to generate graphics in this manner starts with a
serial table of the successive points in the figure to be
drawn on the screen. The table, of course, is stored in
the computer's memory and the area of memory holding
the table is often referred to as the position table. Under
program control these points are fed to the d/a con-
verter's inputs and then converted into analog voltage
for the display.

However, most displays cannot hold the informa-
tion unless it is constantly refreshed, much in the same
way dynamic memories must be refreshed. To do this,
the values held in the table must be repeatedly output
to the display. Otherwise, only a brief image will flash
on the screen. The image produced by the converter
outputs is composed of points of light; however, by
speeding up the rate at which the converter's output
amplifier can change its value (the slew rate), the dis-
play can be made to appear as a continuous line.

One simple way to actually draw a picture on the
display screen is to use a joystick to enter the points
to be displayed into the computer memory. (A joystick
is often a lever connected to several potentiometers
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Table 9.5 Bit Settings for I/O Control Lines for the 88-AD/DA

Control/Status Register

B-bit 4 B -bit 3

0 0

0 1

1 0

1 1

Cleared

LOW on the positive transition of the first "E" pulse
following an MPU write section B data operation,
occurring after control /status register, bit 7, is cleared
by a read section B data operation.

LOW on the positive transition of the first "E" pulse
after an MPU write section B Data operation.

LOW when Control /status register B, bit 3, goes LOW
as a result of an MPU write in control status register B.

Always HIGH as long as control /status register B, bit 3,
is HIGH. Will be cleared when an MPU write control/
status register B results in clearing control status register
B, bit 3, to 0.

Note : Control/status register B-bit 5 is HIGH.

Table 9.6 CA and CB Line Function Selection for the 88-AD/DA

Control/Status Register

A-bit 4 A-bit 3 Cleared

0 0 LOW on negative transition of "E" after an MPU read
section A data operation.

0 1 LOW on the negative transition of "E" after an MPU
read section A data operation.

1 0 LOW when control/status register A, bit 3, goes LOW
as a result of an MPU write to control/status register A.

CB2

Set
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HIGH when the interrupt flag bit, control/status register
B, bit 7, is set by an active transition of the CB1 signal.

HIGH on the positive edge of the first "E" pulse follow-
ing an "E" pulse which occurred while the part was
deselected.

Always LOW as long as control /status register B , bit 3, is
LOW. Will go HIGH on an MPU write in control/ status
register, section B, that changes control/ status B,
bit 3, to 1

HIGH when control/status register B, bit 3, goes HIGH as
a result of an MPU write into control/status register B.

CA2

Set

HIGH when the interrupt flag bit, control/status register
A, bit 7, is set by an active transition of the CA1 signal.

HIGH on the negative edge of the first "E" pulse which
occurs during a deselect.

Always LOW as long as control/status register A, bit 3,
is LOW. Will go HIGH on an MPU write in control/
status register A, that changes control/status register A,
bit 3, to 1.

1 Always HIGH as long as control/status register A, bit 3,
is HIGH. Will be cleared on an MPU write to control/
status register A that clears control/status register A,
bit 3, to a 0.

Note : Control/status register A-bit 5 is HIGH.

and power supplies.) By moving the lever, the voltage
outputs of the potentiometers change and this informa-
tion can then be converted into digital form by the a/d
converter and then stored. The computer can then read
this information from the memory and display it on the
screen.

To view the joystick data as they are entered, the
two steps of acquiring the data and displaying the data
must be multiplexed by the software. This is accom-
plished by outputting the table information each time
a new point is entered. To avoid filling the memory
with redundant information when the joystick is sta-
tionary, the program should test each input location
to see if it is different from the last byte stored. Further
reduction of memory storage requirements can be ac-
complished by masking off bits at the least significant

HIGH when control/status register A, bit 3, goes HIGH
as a result of an MPU write into control/status register
A.

end of the position word (the new position data must be
different from the old by some amount before they are
stored). Masking off two bits still provides six bits of
resolution. Since two coordinates are involved, the
amount of memory used for the position table is directly
proportional to the square of the resolution. Thus, an
8-bit system uses 16 times as much memory as a 6-bit
system. The flowchart for the joystick data entry and
display routine is shown in Fig. 9.7.

Provide Control for Large Loads

Most computer circuits are limited when it comes
to the amount of power they can control just mere
milliamps in most cases. When larger power require-
ments must be handled, special drive circuits must be



128

NOTE:
X = Don't Care
CBA = Binary Multiplexer Channel Number
CBA=000=CH#0
CBA = 001 = CH#1
CBA = 010 = CH#2
etc.
etc.
CBA = 111 = CH#7

Location Contents Comments Bits

The S-100 Bus Handbook

n + 000 076 LXI Acc 7 6 5 4 3 2 1 0
001 )X X X X C B A X

002 323 Output
003 103

004 333 Input

005 100

006 346 AN I
007 200 DATA

n+010 312 JZ
011 n +

012 004

013 333 INPUT

014 101

Fig. 9.4 Sample program for hardware control of the
88-AD/DA board.

NOTE:

X = Don't Care
CBA = Binary Multiplexer Channel Number

CBA=000=CH#0
CBA = 001 = CH#1
CBA = 010 = --H#'-2

etc.
etc.
CBA = 111 = CH#7

Location Contents Comments Bits

n + 000 076 LX I Acc 7 6 5 4 3 2 1 0

001 X X X 0 C B A 1

002 323 Output

003 103

004 000 NOP) data settle

005 000 NOP time delay

006 076 LX I Acc

007 X X X 0 C B A 0-

n + 010 323 Output
11 103

12 076 LXI Acc

13 X X X 1 C B A 0

14 323 Output

15 103
16 t ^--333 Inpu
17 100

n + 020 3461 AN I

21 200 100 00000

22 312 JZ

23 +n
24 016

25 333 Input

26 101

Fig, 9.5 Sample program for software control of
the 88-AD/DA board.

SHADED = BLOCK
LINE AND POINT= VECTOR

SHOWN IN 4-BIT RESOLUTION
(16 STEPS=FULL SCALE)

Fig. 9.6 By using both d/a converter outputs from the
88-AD/DA board, full X-Y drawings such as circles
can be done on video displays or recorders.

used to boost the current and voltage handling capabil-
ities of the computer circuits. The 88-PCI made by
Pertec is one possible circuit card that can plug into
the S-100 bus and control motors, lamps, alarm sys-
tems, and much more (Fig. 9.8).

The 88-PCI provides eight individual control out-
puts, each capable of handling I A at 120 V ac (resistive
loads). All control is performed via a 6820 PIA. This
control circuit has 16 programmable lines (eight of
which are used as output lines and eight as input lines)
for sensing and response acknowledgment. There are
also control lines for each set of eight lines. All the con-
trol lines are programmable via the instructions as
inputs or outputs, as described earlier in this chapter
for the 6820's used in the 88-AD/DA board. For the
88-PCI board, section A of the PIA acts as the input
lines to the computer while section B acts as the eight
output lines that control the high-power loads. A full
schematic of the board is supplied in Appendix C.

The board is set up so that it can be located at any
one of 64 possible locations four addresses are re-
quired for the board. The actual address selection is
done via a multiple-position switch mounted on the
board. When the set address is input to the board from
the bus, the logic on the board gets enabled and the
board is ready for its first command. Address lines A2
to A7 are used to select the main board address and
lines AO and Al are also fed into the board. AO selects
the PIA register C/S when LOW and DDR when
HIGH, and Al determines which section of the PIA-
section A when LOW in conjunction with RS1, and sec-
tion B when both lines are HIGH.

Section A, the input channel, reads data from the
optoisolators, and section B, the output channel, con-
trols the relays that in turn control the high-power
loads.

When a valid address is present, the circuits are
enabled and are looking for the SOUT or the SINP
signals from the bus to tell the PIA whether to perform
an input or an output operation. After the computer
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TEST FOR END
OF ALLOTTED
TABLE

NO

INPUT Y

GO TO NEXT
LOCATION IN
POSITION
TABLE

MASK
TO 6
BITS

STORE X ANDY
IN TABLE;
INCREMENT
TABLE POINTER

Fig. 9.7 To enter data from joysticks, this simple
flowchart can be converted to a full control program
that monitors the a/d converter outputs on the
88-AD/DA board for a change in value before storing
the new value in the computer's memory.

requests an input from the PCI board, a wait-state
generator circuit on the board causes a short processor
delay to help synchronize the processor to the PIA chip.
A WAIT cycle can be caused by the PWAIT signal from
the bus too. And, the bus POC signal can be used to
initialize the PIA so when power comes on data can be
loaded into the PIA control registers.

The only timing signal required by the PIA to lock
onto or output data is the enable signal (E pulse). This
signal is generated by a combination of the PWR,
PDBIN, PINTE, and phase I clock signals. The PWR
and PDBIN signals can normally control the E line of
the PIA. And, the PINTE and 01 clock can generate

START

LOAD H AND
L WITH
POSITION
TABLE START

LOAD D AND
E WITH
INITIAL
COORDINATES

INPUT X
FROM
JOYSTICK

MASK TO
6 BITS

INPUT Y

START AT
BEGINNING
OF POSITION
TABLE

OUTPUT
TO D-A

an interrupt to stop the PIA operation when the pro-
cessor has halted for any reason.

Each output of the PIA port B drives a combina-
tion transistor/ relay circuit. The transistor is used
to boost the current output of the PIA lines enough to
drive the low-power coil of the relay, which can drive
the larger power loads. The mechanical contacts of the
relay are routed to a bare area on the circuit board
where you can customize the output circuitry and in-
clude any contact protection circuits that can help pro-
long relay contact life. Each type of load the relay drives
will require a different type of protection circuit, and
we'll look at some of these schemes shortly.

The PIA input lines, protected from the dangers of
uncontrolled electrical signals by optical isolators, can
handle just about any kind of electrical input. The op-
tical isolator typically consists of an LED and a photo-
diode or phototransistor that are very tightly coupled
together. When the LED is turned on by the input con-
trol signal from some external device, the light from
the LED turns on the electrically isolated detector,
causing a predefined logic level to appear at the input
to the PIA. However, each application has a different
set of voltages that must be scaled or boosted so that
the LED will generate enough light to cause the isolator
output to be at the proper level for the PIA.

Several isolators are used to provide isolation for
output control signals to the peripheral I/O bus. For
these circuits there are various options that must be
considered before the board can be used for instance,
the isolator output can be made to match the PIA out-
puts or they can be made to complement the PIA out-
puts. A simple jumper connection determines whether
the isolator output is the same as the PIA's output, or
the inverse. Also, the phototransistor output of the
isolators is completely unconnected, and must be con-
nected to the appropriate power supplies, grounds, or
other circuit interfaces. Isolators are provided for the
CAI and CBI inputs and for the CA2 and CB2 outputs.

The 88-PCI board performs a total of three types
of operations--input, output, and interrupt. An input
operation starts with the board address being sent out
on the address bus to enable the rest of the board cir-
cuitry. The SINP line in conjunction with the ADDRESS
VALID signal enables the PIA and the data bus drivers,
thus giving control of the data input bus to the 88-PCI
card. These signals will also cause the board to initiate
a WAIT state. When the WAIT state is finished, the
PDBIN signal causes an ENABLE signal which clocks
the data at the PIA input lines through the 6820 and
onto the data input bus.

For an output operation, the address should again
be input to the board, thus enabling the circuitry. The
SOUT line should also be HIGH, thus causing the PIA
to go into a READ mode from the data out bus. When
the DATA VALID signal appears in conjunction with
the SOUT signal , the bus receivers get enabled and
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AO-Al

ADDRESS
A2-A7 SELECT

AND
DECODE

PRDY

SINP

SOUT

VALID
ADDRESS

READ/WRITE
CHIP SELECT AND
BUS CONTROL
DRIVER/
RECEIVER

PWAIT
POC

PWR -►

PDBIN

PINTE
ENABLE
CIRCUIT

Q

FLIP-FLOP

OPTOISOLATORS

PAO-PA7

REGISTER
SELECT 0

CHIP SELECT

RECEIVER / DRIVER

RESET ENABLE

RECEIVER ENABLE FOR OUTPUT

DRIVER ENABLE FOR INPUT

OPTO

OPTO

I RELAY AND
DRIVERS

HANDSHAKE

PBO-PB7

(1--* 3

HANDSHAKE

CAI CA2 CBI CB2

6820 PIA

DO

•

IROA

IROB

0 0 0 0 0 0 0
VECTOR INTERRUPT LINES

DATA BUS
DRIVER/RECEIVER

DIO-DI7 DOO-DO7

Fig. 9.8 Block diagram of the 88-PCI card.

100

50

0

O

0
10

5

230 VAC POWER FACTOR = I
(RESISTIVE)

OT I I
I 2 3

LOAD CURRENT (A)

4

Fig. 9.9 Contact life curve for the relays on the
88-PCI card.

data from the bus reach the PIA data bus inputs. The
bus PWR signal then causes the data to be fed through
the PIA and appear on the PB output data lines. A logic
one will turn on a relay and a logic zero will leave the
relay de-energized.

The board also performs an interrupt operation via
the CAI or CBI input lines. During board initializa-
tion, the C/S registers determine whether this change
will be from HIGH to LOW or from LOW to HIGH.
Assuming the interrupt signals are enabled, either

RELAY: LZ TYPE

120 VAC POWER FACTOR = I

CONNECTOR ( 25-PIN DB)

OPTO

PINT

IRQA for section A or IRQB for section B will be LOW
on the ENABLE pulse when this transition takes place.
Thus, the interrupt request is clocked out of the 6820
by the ENABLE pulse. The type of interrupt requested
depends on whether the interrupt request lines are tied
to the PINTE bus line (which is normal), or to one of
the vectored interrupt lines of the bus (if a vectored in-
terrupt card is used).

Get to Know the 88-PCI Board Options

To get a board such as the 88-PCI set up for your
application, there are many factors to consider-relay
contact life, optoisolator input and output condition-
ing, software initialization, and developing the spe-
cialized applications software.

The first step should be to determine the number
of relays that will be needed, the power each must han-
dle, and the type of load to be driven (resistive, induc-
tive, or capacitive). The application determines the
number of relays by the control functions that must be
performed. The voltage and current that the relay con-
tacts can safely handle without damage must be calcu-
lated. For the particular relays on the 88-PCI board,
the chart of Fig. 9.9 will help determine the number of
operations the relay can handle for a particular voltage,
current, and load. For example, a 120 V ac, 1 A resistive
load (power factor = 1) permits a contact life of about
500,000 operations. If this number of operations is too
low, the relay must be used to drive a smaller load, such
as a higher-rated relay or solid-state switch that can
handle the actual power requirements over the desired
lifetime.

D7

6820 DATA LINE
(BIDIRECTIONAL)

OPTO
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RELAY
C inpF
=(LOAD [)2 xO.1

Fig. 9.10 For dc loads, this snubber circuit can help
protect the relay contacts.

The type of load the relay drives has a lot to do with
the contact lifetime. Simple resistive loads are the easi-
est to handle since they don't cause any reactive volt-
ages or currents that cause arcs and thus damage to the
contacts as the contacts open and close. Special circuits,
though, can extend the contact life to sometimes double
or triple the calculated time by protecting the relays
from arcing as the contacts open and close. The arcing
causes the contacts to rapidly wear and also causes un-
desirable electromagnetic and radio-frequency inter-
ference.

Protection circuits should be assembled in a chassis
suitable to handle the power they must dissipate.
Ideally, they should be located close to the relays to
minimize the effects of the wire inductance. Inductance
from a lamp or coil of any sort is the most dangerous
type of load since as the magnetic field created by the cur-
rent collapses (when the power is cut) it causes a large
back voltage that can generate arcs between the relay
contacts.

For dc loads, a series resistor and capacitor con-
nected across the contacts can be used to minimize arc-
ing (Fig. 9.10). Component values should be selected
to suppress arcing but not affect load or relay perform-
ance. Unfortunately, the best way to select values is
through empirical testing. The capacitance should be
large enough for worst-case conditions, and the resis-
tance should be large enough to limit the capacitance
charge/ discharge current. However, if the resistor is too
small, the contacts will weld shut, and if too large, the
capacitor's effect will be negated. A good starting point,
though, can be determined with the capacitance value
computed with this formula:

C = I,/ 10

where C is in microfarads, and I is in amps.
Next, determine the time constant you would like

for the RC network, and then determine the resistance
from the formula

R=r/C

where T is in microseconds, C is in microfarads, and R
is in ohms.

Another alternative circuit for dc loads is shown in
Fig. 9.11. When contact separation occurs, it gives a
near-zero voltage drop across the relay contacts, even

RELAY

Fig. 9.11 Another version of a snubber circuit for
dc loads on the 88-PCI.

I I

RELAY

vac

GD

Fig. 9.12 For ac inductive loads, this snubber circuit
can help protect the relay contacts on the 88-PCI
board.
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for highly inductive loads. The values of the capacitor
and the diode are selected so that at the instant of separa-
tion, the peak voltage to which the capacitor charges
will not cause breakdown of the diode, the contact gap,
or the capactor itself.

When ac voltages are used to power loads, the arc
caused by current continuing to flow extinguishes
when the current passes through zero during the cycle.
Thus, for ac resistive loads, contact protection for the
relays is not as critical as for dc loads. An arc can last
no longer than 8.3 milliseconds on a 60 Hz power line,
since current reversals occur 120 times a second. And,
the higher the power frequency, the shorter the dura-
tion of the arc. For ac inductive loads, the protection
circuit of Fig. 9.12 shows how to minimize contact
damage. This network allows the arc to extinguish nat-
urally by making an inductive load appear resistive to
the contacts.

If complete electrical isolation is needed between
the load and the relay, the on-board optoisolators can
be used. To interface the isolators to the load, there are
several factors to consider-the voltage applied to the
inputs, the switching time and propagation delays, and
the method of transmitting the signals to the board.
Pads on the 88-PCI board provide a circuit that can be
adapted for a wide range of voltages and pulse widths.
The optoisolator configuration is shown in Fig. 9.13.
The isolators are dedicated to either input or output
isolation functions.

To adapt input voltages for PIA sensing, the circuit
of Fig. 9.14 can be used. However, several calculations
must be performed to set the external component val-
ues that limit the LED voltage and current and the out-
put current of the phototransistor. For the CAI and
CBI PIA inputs, the input leakage current is 2.5 MA,
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MITS-SUPPLIED 1 USER-SUPPLIED

25-PIN D8
MALE PLUG SWITCH

VOLTAGE
SOURCE

Fig.9.13 If the 88-PCI board is purchased fully assembled, the optoisolators on it are set up in this configuration.

+5V

RPULLUP

r-- -------^ RLIMIT +

I j T C SIN'4 i
1 1 10 __o

Fig. 9.14 This circuit can adapt the optoisolator
inputs to handle any voltage level that a signal external
to the 88-PCI board might present.

which is negligible, and the current into the PIA is vir-
tually zero. Thus, the current through the pullup re-
sistor (Ip„uup) is equal to the transistor collector current
(Ic). The input high voltage (VIH) is 2 V (min), which
makes the voltage across the pull-up resistor equal to
the supply voltage (Vcc) minus V,H, or 3 V. Next, the
current in the pullup resistor can be calculated by di-
viding the voltage across the resistor by the resistance,
and that turns out to be 3 V/2.2 k1Z = 1.36 mA (max).
The particular optoisolators that are used have a cur-
rent transfer ratio of 35%, which means that the cur-
rent through the transistor collector represents ap-
proximately 35% of the current that flows through the
LED. Thus, the current through the LED can now be
found to be 3.9 mA (max).

Therefore, the maximum input current through the
LED for a logic HIGH input is 3.9 mA. Now, the cal-
culations for a logic LOW input must be performed.
These calculations start with the determination of the
logic LOW level, which for the PIA is 0.8 V. Thus, the
voltage across the pullup resistor can be found by sub-
tracting the PIA input voltage from the supply voltage
(5 V - 0.8 V = 4.2 V). The minimum pullup resistor cur-
rent can then be found by dividing the voltage by the
resistance (4.2 V/2.2 kf2 = 1.91 mA). With the CTR
of 35%, the LED current then becomes 5.45 mA.

Next, the isolators for the PIA inputs PAO to PA7
can be set up by first calculating the current flow and
voltage drops to compute the LED current. To start
the calculations, begin by examining the PIA input
parameters:

Input high current (I1H) = -100 to (min)
Input low current (I,L) = -1.6 mA (max)

Input high voltage (VIH) = 2 V (min)
Input low voltage (VIL) = 0.8 V (max)

For a logic HIGH at the PIA input the pull-up
current is the supply voltage minus VIH with the result
divided by the pull-up resistance, or

(5 - 2)/2.2 kfl = 1.36 mA

Now the phototransistor current can be found by sub-
tracting the input HIGH current from the pull-up cur-
rent, or

1.36 mA - (-0.1 mA) = 1.46 mA

Finally, the LED current can be determined by dividing
the transistor collector current Ic by the CTR

ILED = 1.46/35% = 4.17 mA

When the PIA has a logic LOW on its input, the

minimum pull-up current can be found by subtracting

VIL from the supply voltage and dividing the result by

Rpun-up:

Ip„II-„p = (5 - 0.8)/2.2 kfl = 1.91 mA

Next, the Ic can be found by subtracting IIL from

lpull-up:

Ic = 1.91mA-(-1.6mA)= 3.51 mA

Now the LED current can be found by dividing Ic by
the CTR:

ILED = 3.51 mA /35% = 10.03 mA

Table 9.7 summarizes the LED currents for active and
inactive levels.

Table 9 .7 Active and Inactive LED Voltage Levels for the 88-PCI

For CA1, CB1 For PAO-PA7

All in mA min. nominal max. min. nominal max.

ILED for
input LOW 5.45 10 100 10.03 15 10

ILED for
input HIGH -0.1 pA 0 3.90 -0.1 µA 0 4.1
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OPTOCOUPLER
--------_ RLIMIT +

C VIN
l-0

DIODE

Fig. 9.15 When input signal pulses are too narrow
to cause the LED to stay on long enough for the photo-
transistor, this circuit can stretch the pulse widths
so the LED will cause the transistor to turn on.

MITS USER
OPTOCOUPLER SUPPLIED SUPPLIED

180 R

STD
-o TTL

GATE

Fig. 9.16 To couple the optoisolators on the 88-PCI
to standard TTL loads, this circuit adjusts all the volt-
ages to the proper values.

Other set-up problems that can occur include signal
pulses that are too narrow to cause the LED to light
long enough to turn on the phototransistor. For the
isolators on the 88-PCI to operate properly, input
pulses must be greater than 20 ps in width. When nar-
rower pulses are input, the circuit shown in Fig. 9.15 can
help widen the pulses. Pads are available on the board
for the necessary components to be added. The values of
R and C that reshape the pulse are best determined by
cut-and-try methods, but for a basic procedure start
with some values that result in a time constant (RC
product) equal to the pulse width.

First, the capacitor must charge to the maximum
input voltage less the forward voltage of the diode
(V;,, - VD) when the pulse occurs. As the input voltage
returns LOW, the following formula can help determine
the LED current:

ILED = [(Vcc - 1. 3)/R] el-, RC)

where T is the pulse duration in seconds, Vcc the pulse
height, R the limiting resistance, C the capacitance, and
e the natural log bsae (2.71838). Because the LED has a
maximum reverse current of 0.1 µA, the external diode
should be chosen for low reverse leakage current.

+VCC

J2

SIGNAL J3
FROM } -0
6820

+5V
0

OPTOISOLATOR

PIA HIGH OR LOW
ACTIVE SELECT

Fig. 9.17 For the PIA control lines, the output opto-
couplers can be set up like this to provide a load drive
capability of about 12 mA at 20 V.

On the 88-PCI board, the inputs are set up by the
factory for standard TTL-level interfaces, as shown in
Fig. 9.16. In this form, the TTL gate outputs will sink
approximately 15 mA in the LOW state and 5 to 10µA
in the HIGH state.

The output side of the PIA has some similar re-
quirements for set up, except that there are more lim-
ited input conditions for the optoisolators and more
flexible requirements for the phototransistor collector
outputs. Figure 9.17 shows the optoisolator connected
in a typical output configuration for the CA2 and CB2
outputs. When driven in this manner, the phototran-
sistor can handle up to 12.6 mA when the LED is driven
at its maximum current. The phototransistor should
have no more than 20 V placed across the collector-
emitter junctions (BVCEO) to prevent burnout. Also,
current levels should not exceed the overall safety lim-
its of the isolator-a total power dissipation of 200 mW
(LED plus phototransistor). When the LED is handling
a 36 mA maximum current, it dissipates about 47 mW
and thus the transistor dissipation should be limited
to about 150 mW to avoid overheating.

Although the optoisolators can provide isolation
of 1000 V or more, they are limited in their frequency
response depending upon the type of load they must
drive. The switching time of the phototransistor is di-
rectly proportional to the load resistance RL and the
open-circuit base capacitance of the transistor Cob. In
most phototransistors, relatively long time constants
occur in the output circuit because the typical value of
Cob is approximately 25 pF. This time constant will be
proportional to the transistor's current gain /3. For ex-
ample, for a 500 (1 load, a phototransistor with a typi-
cal minimum /3 of 100 and a Cob of 25 pF produces a
time constant of 1.25 µs. Switching time requires five
time constants for a total of 6.25 µs, which corresponds
to a bandwidth of just 130 kHz. With most optocouplers
in use today, load resistances of 1000 fl or more will se-
verely limit the switching signals to frequencies of 500
kHz and less. For most applications, this shouldn't
pose a problem; however, make sure it is adequate for
the system being designed.

There are some things that can be done to speed up
the optocouplers-removing the stored charge in the
transistor's base circuit. To do this, a base-to-emitter
bleed resistor can be added (see Fig. 9.18). This resistor
will, however, reduce the coupler's sensitivity and cur-
rent transfer ratio along with cutting the switching time.
The limiting resistor value is zero ohms, which shorts
the base of the phototransistor to its emitter, thus creat-
ing a photodiode. At this point the speed is the fastest
possible, but the sensitivity has reached its minimum
value.

Connecting the phototransistor to a load means
that the collector and emitter leads must be wired to
power supplies, ground terminals, resistors, or other
components to provide the desired signal levels for the
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J2
0

CHOOSE OPTIONAL LIMITING RESISTOR
TO KEEP OPTO PACKAGE DISSIPATION
WITHIN LIMITS.

Fig. 9.18 To speed up the phototransistor response, a
bleed resistor can be added between the base and
emitter terminals of the optoisolators on the 88-PCI
board.

application. Pads on the board are provided for both a
collector resistor and an emitter resistor to simplify
the connection of the transistor to both the power sup-
ply and ground buses. Factory recommendations advise
that the pads only be used where short cable runs are
used and where supply isolation is unimportant. Gener-
ally, the power supply of the system connected to the
transistor should be used to supply the bias levels to
permit total isolation from the computer system. Some
examples of the various interface connections are shown
in Fig. 9.19.

After the hardware is set up for the application, the
next step is to prepare the software necessary for the
computer to control the board. To do the software ini-
tialization, the registers in the PIA must be loaded with
the set-up information. Table 9.8 defines the board ad-

V+

TO
COLLECTOR

TO
EMITTER

Table 9 .8 Address and Control Line Status Definition for the
88-PC I

Register Selection

RSO AO RS1 Al CRA-2 CRB -2 Register Selected

1 0 0 0 X X Control /status register

(section A)

1 0 0 X Data direction register
(section A)

1 0 1 X Data register

(section A)

0 0 0 X X Control /status register
(section B)

0 X 0 Data direction register

(section B)

0 X 1 Data register
(section B)

dress and control-line status necessary to set up the data
direction registers and the control/status registers. The
MRS tell the PIA whether to set up the 1/0 lines as
inputs or outputs and the C/S registers control the
functions of the CAI, CB 1, CA2, and CB2 signal lines.

The C/S registers also determine whether to write
to the data register or the DDR. Before data can be
written to the DDR, bit 2 of the C/S register must be
set to 0. This is done by writing a 0 to the C/ S register of
the PIA section (A or B) desired. The section A DDR is
enabled by writing Os to the board base address ("A"
C/S register); and the B section by writing Os to the
base address + 2 ("B" C/S register).

Thus, with bit 2 set to 0, the next time the data chan-
nels (base address + 1, and base address + 3) are written
to, the data are loaded into the DDR. Section A con-
nects to the optoisolator inputs and section B to the
relays. Therefore, section A must be set as input lines

FOR MORE SOURCE CURRENT:

V+ (UP TO 20 V)

FOR MORE SINK CURRENT:

V+ (UP TO 20 V)

SIGNA4 ^ J3
FROM T - 1 J
6820 ^/

VCC (+5 V)

OPTO
I wl

JI Rp DRIVE

L.

I

E

RL RBLEED

R9

SENSITIVE RELAYE
o(10 mA OR LESS)

ROPTIONAL

RLOAD

Fig. 9.19 Some typical optoisolator interface examples.
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Table 9 .9a Control Line Definitions for the 88-PCI Table 9.9d Control Line Definitions for the 88-PCI
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Bit No. 7 6 5 4 3 2 1 0 For CA2:

C/S IRQA 1 IRQA 2 CA2 DDR-A CA1

section A flag flag control access control

C/S C/S C/S

bit 5 bit 4 bit 3

1 0 0

1 0 1

1 1 0

1 1 1

Cleared Set

C/S IRQB 1 IRQB 1 CB2 DDR-B CB1

section B flag flag control access control

Table 9 .9b Control Line Definitions for the 88-PCI

C/S C/S Intr. flag
bit 1 bit 2 CAl or CB1 C/S bit 7 MPU IRQ

0 0 1 active Set HIGH

0 1 1 active Set HIGH

1 0 t active Set HIGH

1 1 t active Set HIGH

Disabled

Goes LOW when C/S
bit 7 goes HIGH

Disabled

Goes LOW when C/S
bit 2 goes HIGH

1 = from HIGH to LOW signal transition
t = from LOW to HIGH signal transition

1 = Logic HIGH
0 = Logic LOW

Section A: C/S bit 7 (Int. flag) is reset (LOW) by a read of A sec-
tion data channel register.

Section B: C/S bit 7 ( Int. flag ) is reset (LOW) by a read of B sec-
tion data channel register.

Table 9.9c Control Line Definitions for the 88-PCI

CB2:

C/S C/S C/S
bit 5 bit 4 bit 3 Cleared Set

1 0 0 Low on t of first E HIGH when Int. flag
pulse after write of (C/S bit 7) is SET.
B data channel regis-
ter after C/S bit 7 is
reset by a read of B
data channel register.

1 0 1 LOW on f of first E HIGH on t of next
pulse after a write of E pulse.
B section data chan-
nel register.

1 1 0 Always LOW when
bit 3 LOW.

1 1 1 Always HIGH when

bit 3 is HIGH.

CA2 and CB2 differ slightly in function.

and B as output lines. To initialize section A (at base
address + 1) as an input, Os should be written to the
DDR, and to initialize section B as outputs (at base
address + 3), is should be written into the respective
DDR. After DDR initialization, the C/S register must
be set to 1, thus preventing the data in the DDRs from
being altered. Tables 9.9a, b, c, and d show the various
options for the control lines and their interaction with
the interrupt-request lines and the status bit in the C/S
register.

HIGH when Int. flag
(C/S bit 7) is set.

HIGH on 1 of first
E pulse which oc-
curs while device is
deselected.

Same as CB2.

Now that all the aspects of electrical set-up for the
88-PCI have been examined, it's time to look at how
the computer actually performs control functions. To
to that, let's examine some simple examples that illus-
trate some of the things the board can do. However, be-
fore going through any example, some programming
assumptions must be made. For the sake of consistency
from program to program, the board base address will
be assumed to be at octal address 100 (optoisolator in-
put control status), the base address + 1 is location 101
(optoisolator input data + DDR), the base address + 2 is
location 102 (relay control control/status), and base
address + 3 is location 103 (relay control data + DDR).

The programs in Table 9.1Oa and b contain just the
initialization procedures to set up the PIA so that the
A section lines are inputs, all B section lines are outputs,
and the C/S lines of sections A and B are set up as in
Tables 9.9a, b, c, and d. With the PIA initially set up,
the next step is to move data into or out of the computer
through the PIA. To bring data into the PIA, the pro-
gram in Table 9. 11 brings all eight isolated lines into
the computer's accumulator, masks the desired bits, and
then performs a conditional jump or subroutine call
operation by testing the result.

Output routines that turn a specific bit on or off
without affecting any others are shown in Tables 9.12a
and b. And to set up the state of all relays with a single
byte, the program segment of Table 9.13 can be used.

Depending on the application, there are an almost
unlimited number of functions possible for the 88-PCI
board. For household applications, input uses include
thermostats, alarm sensors, clocks, manual switches,
and remote control transducers. By using the computer
to monitor these different input signals, output items
such as heaters, air conditioners, alarms, appliances,
and stereo equipment can readily be controlled. In many
industrial applications, inputs such as strain gauges,
limit switches, pressure transducers, thermostats, posi-
tion sensors, and many other sensors can be used by
the computer to control various applications such as

LOW on 1 of E pulse
after read of A data
channel register.

LOW on 1 of E pulse
after read of A data
channel register.

Same as CB2.
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Table 9.10a Assembly Language Initialization Procedure for the 88-PCI

Address Contents Mnemonic Description

000 076 MV I -> A 1 Load all 0's to Accumulator A
1 000 data I
2 323 OUT Zero control/status register ( making bit 2 = 0, giving access to

3 100 address DDR)

4 323 OUT
Write zeros to DDR of Section A (making PA lines inputs)

5 101 address

6 323 OUT Zero B control/status register (make bit 2 = 0, giving access to

7 102 address B DDR)

010 076 MVI - A 1 Load all 1s to Accumulator
1 377 data 1(

2 323 OUT } Write 1s to DDR of Section B (make PB lines outputs)
3 103 address

4 076 MVI --? A 1

5 044
data j Load Accumulator with 00100100 bit pattern

6 323 OUT
1 Write 044 (octal) to A C/S set function

7 100 address

020 323 OUT
) Write 044 (octal) to B C/S set function

1 102 address )

Table 9.10b BASIC Initialization Procedure for the 88-PCI

Out 64, 0
Out 65, 0
Out 66, 0
Out 67, 255 (377 octal = 255 decimal)
Out 64, 36 (044 octal = 36 decimal)

Out 66, 36

Table 9.11 Simple Input Subroutine for the PIA on the 88-PCI

Address Contents Mnemonic

n
n + 1

n+2
n + 3

n + 4

n + 5

n +6

Description

333 IN } Input from A data (opto inputs)
101 address

346 ANI )Logical AND with immediate data (mask for bits of interest
XXX data

302 or JNZ or

312 JZ

XXX low
Conditional jump or subroutine call

address

XXX high
address

Table 9.12a Routine to Turn On a Specific Output Bit on the 88-PCI

Address Contents Mnemonic

n
n + 1

n + 2
n + 3

n + 4

n + 5

Description

333 IN
Read output register for existing condition

103 address

366 ORI OR with data of bits to turn on (to turn on bit 0, data would

XXX data be 001 octal)

323 OUT
Output new control word

103 address
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Table 9.12b Routine to Turn Off a Specific Output Bit on the 88-PCI

Address Contents Mnemonic

n
n + 1

n + 2
n + 3

n + 4
n + 5

Description

333 IN

103 address
Read existing output register

346 ANI AND with complement of bits to be turned off (to turn off
XXX data bit 0, data would be 376 octal)

323 OUT
Output new control word

103 address

Table 9.13 Routine to Output a Full Byte on the 88-PCI
(When you know what state you want the relays in, the output is simple):

Address Contents Mnemonic Description

n 076 MVI-4A i
n + 1 XXX data lj Load on and off bit pattern to accumulator

n + 2 323 OUT
n + 3 103 address

Output to relay control channel

START

/ IS
GROUND

HUMIDITY
TOO LOW

NO

NO IS IT
9 PM

YES

TEMPERA-
TURE LOW
ENOUGH,

IS

NO

/ OTHER
TEST

CONDITIONS

YES

YES

IS WIND
FACTOR OK

NO

YES TURN ON WATER
FOR 15
MINUTES

Fig, 9.20 Flowchart of a lawn sprinkler system ex-
ample using the 88-PCI.

tool motor power, positioning motors, solenoid valves,
heaters, solenoid driver rejectors, and solenoid stampers.

One example of a specific application is a lawn
sprinkler control system. In this application, the com-
puter will monitor the moisture level of the lawn and
when the level drops below•a specified value, the com-

puter will turn on the water until the moisture level re-
turns to the desired level. However, just an on/off con-
trol system won't do. Other factors such as the amount
of water absorption versus the level of evaporation
should be taken into account. Moisture can be measured
by use of a humidistat buried in the lawn. A measure-
ment of the wind speed can be used as a simple param-
eter to gauge the water absorption factor, and a simple
go/no-go switch can be used to inhibit watering if the
wind speed is too high to permit efficient use of the water
(water is evaporating as fast or faster than it is being
absorbed).

Other factors can further add to system complexity
temperature and relative humidity also have an effect
on evaporation. And these parameters can be directly
sensed and then fed into the computer through the 88-
PCI. In any given 24-hour period, optimum tempera-
ture and humidity usually occur concurrently at night;
thus a photocell or other light sensor can be used to
tell the computer whether it is day or night outside.

When the lawn is too dry to wait for optimum water-
ing conditions, a more complex humidistat or additional
humidistats set for lower moisture levels can be used
to signal these conditions. Also, separately controllable
valves can be used if different sections of the lawn are
to be watered at different times. Often, the cost for water
might differ depending upon the time of the day it is
used. So, to use the water only during the lower cost
periods, a clock can be connected as an input to tell the
computer the time of day. Of course, there are many
other options that can be added to the system, and many
features that can be taken away, depending on the com-
plexity of the software controlling the system. The more
features, the more complex the program. A very simple
flowchart that shows some of the conditions and con-
trol functions mentioned is shown in Fig. 9.20.
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There are, of course, many other types of interface almost be books in themselves. These two boards the
boards that can be used with the Altair or Imsai or any 88-AD/DA and the 88-PCI-were selected to illustrate
other S-100 bus computer, but they are too numerous how the computer can be used to perform various mon-
to list or cover in the space of a chapter or two. In fact, itoring and control functions because of their general-
many of the boards have instruction manuals that could purpose capabilities.



CHAPTER 10

Troubleshooting the
Microcomputer System

With a complex system such as the Altair 8800b or
the Imsai 8080 microcomputer, there are many differ-
ent things that can go wrong. Electronic circuits are
prone to failure if overloaded, operated at too high a
temperature, or from a variety of other causes. Trou-
bleshooting a system like the Altair is a nightmare, es-
pecially if you don't know where to begin. You can, of
course, return the equipment to the manufacturer and
wait several weeks to get it repaired. To minimize the
amount of time the system remains down (disabled),
several spare boards and even ICs might be kept on
hand. But which boards and which ICs?

Picking the right components is like trying to pre-
dict the future. However, there are some essential
boards that, if they fail, would stop the entire system
from operating. For example, the CPU card should
have a spare it's not that expensive a component and
without the CPU the entire system is useless. Similarly
for at least one of the serial and one of the parallel in-
terfaces. Also, memory boards should be selected of a
size such that one section of the memory can be re-
moved and there is still enough memory capacity for
the computer to perform even minimally. (This last
spare can usually be accomplished by keeping an 8- or
16-kbyte memory board as a spare.) Although the
temptation to put all the memory on as few boards as
possible is great, until prices for the large memory
chips come down the smaller 8- and 16-kbyte boards are
still very economical. The only reason to really compact
the memory is if you need all the other card slots for
peripheral I/O control, data acquisition, or output.

Depending upon what ails the system, you might be
able to readily discern the problem; then again, you
may not. If whatever went wrong with the system doesn't
permit you to operate any of the equipment, then trou-
bleshooting the system will be like a game of blindman's
buff. Sometimes, the entire system may not work, but
you'll get a telltale sign of trouble-smoke. It's not
unusual for a component to actually burn up from
either too much stress (overloads), or possibly just due
to faulty manufacturing. In either case, when you get
such an indication, it may not just direct you to that

component, but also to any of the components that con-
nect directly to it.

A chain reaction effect occurs quite often in the
power control sections of the computer. If a component
being supplied power by a regulator should short out,
the regulator could, in fact, be overloaded and also
burn out. Thus, not only is there a faulty component,
but a broken regulator as well. This type of chain reac-
tion is very dangerous since many different circuits can
be affected. A reaction in reverse can be even more
damaging-if a voltage regulator fails and the unregu-
lated voltage reaches the ICs, many of the circuits
could be rapidly destroyed since the voltage that pow-
ers them goes above the maximum recommended value.
Depending on the circuit being powered by the regu-
lator it could be a matter of repairing several ICs or
throwing out what was a $700 memory board.

Decide on the Level of Repair You'll Handle

Depending on your technical background, you may
or may not want to tackle the repair of a system that is
down. Several aspects of the technical troubleshooting
will be examined later in this chapter, but first, let's
take a look at the simplest level of system diagnosis
possible beyond the phrase "it doesn't work." Assum-
ing that when the power is turned on, the system doesn't
give off any smoke or look like it will explode, let's
start analyzing what problems may exist. First, let's
backtrack for a moment and define a typical system. A
typical system configuration suitable for small business
and large personal applications would consist of the
following:

1. A system mainframe with control front panel,
power supply, and motherboard large enough to hold
at least 10 S-100 compatible cards.

2. A central processor card (the examples given in
this chapter assume an 8080A-based CPU card, although
there are many Z-80 and other types of processors
available.

3. Enough random-access read/write memory for
the operating software (let's assume 32 kbytes, all lo-

139
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Hexadecimal Octal
version version

00 3E 000 076

01 03 001 003

02 D3 002 323

03 10 003 020

04 3E 004 076

05 11 005 021

06 D3 006 323

07 10 007 020

08 DB 010 333
09 10 011 020

OA OF 012 017

OB D2 013 322

OC 08 014 010

OD 00 015 000
OE DB 016 333
OF 11 017 021

10 D3 020 323

11 11 021 021

12 C3 022 303

13 08 023 010

14 00 024 000

Fig.10 .1 Echo routine for the Altair 8800b computer
to communicate with a serial terminal via the 88-2SIO
board.

cated at addresses 0000 through 7FFF). There should
also be some PROM with the bootstrap programs lo-
cated at the top of the memory (F000 to FFFF).

4. At least one serial 1/0 port set up to operate in
conjunction with a CRT terminal.

5. At least one parallel port set up to deliver its
output to a printer.

6. A floppy-disk controller and at least one floppy-
disk drive.

7. Optionally, a cassette recorder interface and tape
recorder instead of the floppy-disk drive.

8. Finally, the operating system software. This
software should permit the user to develop programs in
a high-level language such as BASIC, and control all
the interfaces to the printer, disk drive (or tape record-
ers), and the CRT terminal.

If the system doesn't work when power is turned on
and the appropriate initialization procedures are per-
formed, it's time to start tracking down the problem.
Where to start, you may ask. Well, the best starting
point is the front panel of the computer. Both the Altair
8800b and Imsai 8080 have switches on the panel that
can be used to check out several functions of the com-
puter-memory locations can be examined, their con-
tents altered, and then even sent out to a specific
port. If the switches on the computer permit you to per-
form these minimal functions, then the CPU is working,
the basic memory array is functional, and the control
panel is operating. However, if you can't even do these
simple operations, you've already narrowed the problem
to the CPU, memory, front panel, power supplies, or
motherboard (card cage).

The next step is to check out the peripheral inter-
faces. There are some very simple machine-language pro-
grams that permit you to type in a character on a CRT
terminal and get the same character outputted by the
computer back to the terminal (Fig. 10.1). This "echo"
procedure lets you check out not only the serial inter-
face, part of the memory, and the CPU, but the ter-
minal as well. Assuming that you could enter the rou-
tine via the front panel and the computer goes into a
loop waiting for the character typed into the terminal,
you know the CPU, the front panel, and the memory
are all functional. The only part of the system in ques-
tion is then the terminal or the serial interface. If they
check out, then the problem might be either in the sec-
tion of the system that loads the operating system from
either the disk drive or the tape drive into the main mem-
ory, or it could be the bootstrap program, or it could be
that part of the memory that the operating system gets
loaded into is faulty.

Assuming the serial interface and the terminal check
out, the most likely suspects for the fault are the disk
(tape) memory or the bank's read/ write memory. Check-
ing out the disk drive is a very complicated procedure
since special small subroutines must be loaded into the
computer to check out the operation of the stepping
motor that moves the read/ write head inside the drive,
the read and write circuits themselves, and the control
of the other drive operations. Checkout of the memory
is another matter.

Check the Memory with Software

In order to check the memory, either the cards can
be pulled out of the system and plugged into another
operating system to run a special diagnostic program, or
a special diagnostic program can be loaded into a known
good section of the computer memory and then run on
the section of the memory in question. Of course, if the
test program can't be loaded into the computer to test
the memory then you have partially narrowed down
the problem to a specific memory card or section of
memory. Diagnostic test programs for memory boards,
such as the one shown in Fig. 10.2, usually can pinpoint
the problem as a specific bit or word that is bad within
the entire array. Then, the defective memory chips can
be replaced and the board can be put back into full
operation after a complete diagnostic has been run with
no faults being found.

If the system can operate to the point of permitting
BASIC to run, then the short program shown in Fig.
10.3 can be used to test an 8192 byte memory card by
using the RND instruction. The board to be tested by
this program must be set so that its address is in some
range above the existing memory. To run the program,
the starting and final address of the memory board to
be tested must be entered in decimal format. Several
minutes are required to test the memory board. After
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0000 0010 CONC EQU 0 CONSOLE STAT PORT
0000 0020 COND EQU 1 CONSOLE DATA PORT

0000 0030 SPTR EQU 0100H STACK POINTER
0000 31 00 01 0040 START LXI SP,SPTR
0003 CD 37 00 0050 CALL CRLF

0006 3E 2A 0060 MVI A,'*' PRINT "*"
0008 CD 2B 00 0070 CALL PTCN

OOOB C3 4F 00 0080 JMP TMEM

000E 0090 *

000E 0100 * CONVERT UP TO 4 HEX DIGITS TO BIN
000E 0110 *

000E 21 00 00 0120 AHEX LXI H,0 GET 16 BIT ZERO
0011 OE 04 0130 MVI C,4 COUNT OF 4 DIGITS
0013 CD 41 00 0140 AHE1 CALL RDCN READ A BYTE

0016 29 0150 DAD H SHIFT 4 LEFT

0017 29 0160 DAD H

0018 29 0170 DAD H

0019 29 0180 DAD H

001A D6 30 0190 SUI 48 ASCII BIAS
001 C F E OA 0200 CPI 10 DIGIT 0-10

001 E DA 23 00 0210 JC ALF
0021 D6 07 0220 SUI 7 ALPHA BIAS
0023 85 0230 ALF ADD L

0024 6F 0240 MOV L,A
0025 OD 0250 DCR C 4 DIGITS?
0026 C2 13 00 0260 JNZ AHE1 KEEP READING
0029 3E 20 0270 SPCE MVI A,20H PRINT SPACE

002B F5 0280 PTCN PUSH PSW SAVE REG A
002C DB 00 0290 PTLOP IN CONC READ PRTR STATUS
002E E6 80 0300 ANI 80H IF BIT 7 NOT 0,
0030 C2 2C 00 0310 JNZ PTLOP WAIT TILL TIS
0033 F1 0320 POP PSW THEN RECOVER A

0034 D3 01 0330 OUT COND AND PRINT IT
0036 C9 0340 RET RETURN FROM PTCN
0037 3E OD 0350 CRLF MVI A,ODH PRINT CR
0039 CD 2B 00 0360 CALL PTCN
003C 3E OA 0370 MV1 A,OAH
003E C3 2B 00 0380 JMP PTCN

0041 0390

0041 0400 *** READ FROM CONSOLE TO REG A
0041 0410 *

0041 DB 00 0420 RDCN IN CONC READ KB STATUS
0043 E6 01 0430 ANI 1 IF BIT 1 NOT 0
0045 C2 41 00 0440 JNZ RDCN REPEAT UNTIL IT IS
0048 DB 01 0450 IN COND READ FROM KB
004A E6 7F 0460 ANI 7FH STRIP OFF MSB
004C C3 2B 00 0470 JMP PTCN ECHO ONTO PRINTER
004F 0480

004F 0490 *** MEMORY TEST ROUTINE
004F 0500 *
004F CD OE 00 0510 TMEM CALL AHEX READ BLK LEN
0052 EB 0520 XCHG PUT IN D,E
0053 CD OE 00 0530 CALL AHEX READ ST ADD
0056 01 5A 5A 0540 LXI B,5A5AH INI B,C
0059 CD 83 00 0550 CYCL CALL RNDM
005C C5 0560 PUSH B KEEP ALL REGS
005D E5 0570 PUSH H

005E D5 0580 PUSH D

005F -CD 83 00 0590 TLOP CALL RNDM
0062 70 0600 MOV M,B WRITE IN MEM
0063 23 0610 INX H INC POINTER
0064 1B 0620 DCX D DECR COUNTER
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Fig. 10 .2 Memory test program for location OOOOH to OOFFH used by Vector Graphic Corp. It is excerpted from their monitor program
and is designed to run in the lowest 256 bytes of the computer's memory.
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0065 7A 0630 MOV A,D CHECK D,E
0066 B3 0640 ORA E FOR ZERO
0067 C2 5F 00 0650 JNZ TLOP REPEAT LOOP
006A D1 0660 POP D

006B E1 0670 POP H RESTORE ORIG
006C Cl 0680 POP B VALUES OF
006D E5 0690 PUSH H
006E D5 0700 PUSH D

006F CD 83 00 0710 RLOP CALL RNDM GEN NEW SEQ
0072 7E 0720 MOV A, M READ MEM
0073 68 0730 CMP B COMP MEM
0074 C4 A4 00 0740 CNZ ERR CALL ERROR ROUT
0077 23 0750 INX H
0078 1B 0760 DCX D
0079 7A 0770 MOV A,D
007A B3 0780 ORA E
007B C2 6F 00 0790 JNZ RLOP
007E D1 0800 POP D
007F E1 0810 POP H

0080 C3 59 00 0820 JMP CYCL
0083 0830 *** THIS ROUTINE GENERATES RANDOM NOS ***
0083 78 0840 RNDM MOV A,B LOOK AT B
0084 E6 64 0850 ANI OB4H MASK BITS
0086 A7 0860 ANA A CLEAR CY
0087 EA 86 00 0870 JPE PEVE JUMP IF EVEN

008A 37 0880 STC
0088 79 0890 PEVE MOV A,C LOOK AT C

008C 17 0900 RAL ROTATE CY IN

008D 4F 0910 MOV C,A RESTORE C

008E 78 0920 MOV A,B LOOK AT B

008F 17 0930 RAL ROTATE CY IN

0090 47 0940 MOV B,A RESTORE B

0091 C9 0950 RET RETURN W NEW B,C

0092 0960 *
0092 0970 *** ERROR PRINT OUT ROUTINE

09800092

0092 CD 37 00 0990 PTAD CALL CRLF PRINT CR,LF

0095 7C 1000 MOV A,H PRINT

0096 CD B3 00 1010 CALL PT2 ASCII

0099 7D 1020 MOV A,L CODES

009A CD B3 00 1030 CALL PT2 FOR

009D CD 29 00 1040 CALL SPCE ADDRESS

OOAO CD 29 00 1050 CALL SPCE

OOA3 C9 1060 RET

OOA4 F5 1070 ERR PUSH PSW SAVE ACC

OOA5 CD 92 00 1080 CALL PTAD PRINT ADD.

OOA8 78 1090 MOV A,B DATA

OOA9 CD 63 00 1100 CALL PT2 WRITTEN

OOAC CD 29 00 1110 CALL SPCE

OOAF CD 29 00 1120 CALL SPCE

0062 F1 1130 POP PSW DATA READ

0063 F5 1140 PT2 PUSH PSW

0064 CD BB 00 1150 CALL BINH

00B7 F1 1160 POP PSW

0068 C3 BF 00 1170 JMP BINL
OOBB IF 1180 BINH RAR
OOBC IF 1190 RAR

OOBD 1 F 1200 RAR

006E IF 1210 RAR

OOBF E6 OF 1220 BINL ANI OFH LOW 4 BITS

OOC1 C6 30 1230 ADI 48 ASCII BIAS

OOC3 FE 3A 1240 CPI 58 DIGIT 0-9

OOC5 DA 26 00 1250 JC PTCN

OOC8 C6 07 1260 ADI 7 DIGIT A-F

OOCA C3 26 00 1270 JMP PTCN

Fig. 10 .2 (cont 'd) Memory test program for location OOOOH to OOFFH used by Vector Graphic Corp. It is excerpted from their monitor
program and is designed to run in the lowest 256 bytes of the computer's memory.
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SYMBOL TABLE

AHE1 0013 AHEX 000E ALF 0023
COND 0001 CRLF 0037 CYCL 0059
PTAD 0092 PTCN 0026 PTLOP 002C
SPCE 0029 SPTR 0100 START 0000

BINH OOBB BINL OOBF CONC 0000
ERR OOA4 PEVE 0086 PT2 OOB3
RDCN 0041 RLOP 006F RNDM 0083
TLOP 005F TMEM 004F

D 0000 OOCF

0000 31 00 01 CD 37 00 3E 2A CD 2B 00

0010 00 OE 04 CD 41 00 29 29 29 29 D6

0020 00 D6 07 85 6F OD C2 13 00 3E 20

0030 C2 2C 00 F1 D3 01 C9 3E OD CD 2B

0040 00 DB 00 E6 01 C2 41 00 DB 01 E6

0050 OE 00 EB CD OE 00 01 5A 5A CD 83

0060 83 00 70 23 1B 7A B3 C2 5F 00 D1

0070 83 00 7E B8 C4 A4 00 23 1B 7A B3

0080 C3 59 00 78 E6 B4 A7 EA 8B 00 37

0090 47 C9 CD 37 00 7C CD B3 00 7D CD

OOAO CD 29 00 C9 F5 CD 92 00 78 CD B3

OOBO 29 00 F1 F5 CD BB 00 F1 C3 BF 00

OOCO OF C6 30 FE 3A DA 2B 00 C6 07 C3

C3 4F 00 21 00

30 FE OA DA 23

F5 DB 00 E6 80

00 3E OA C3 26

7F C3 2B 00 CD

00 C5 E5 D5 CD

El C1 E5 D5 CD

C2 6F 00 D1 El

79 17 4F 78 17

B3 00 CD 29 00

00 CD 29 00 CD

1F 1F 1F 1F E6

2B 00 26 00 C6

Fig. 10 .2 (cont 'd) Memory test program for location OOOOH to OOFFH used by Vector Graphic Corp. It is excerpted from their monitor
program and is designed to run in the lowest 256 bytes of the computer's memory.

30 INPUT "HIGH MEMORY ADD.";H
40 INPUT "LOW MEMORY ADD.";L
50 PRINT "LOCATION", "WROTE", "READ"

60 A=RND (1)
70 B=RND (-A)
80 FOR N=L TO H
90 POKE N, INT (256 * FIND (1))

100 NEXT
110 B =RND (-A)
120 FOR N=L TO H
130 IF PEEK (N) = INT (256*RND (1)) GO TO 150
140 PRINT N, INT (256*RND (0)), PEEK (N)
150 NEXT
160 PRINT "CHECK OK"
170 GO TO 60
RUN
HIGH MEMORY ADD.? 20479
LOW MEMORY ADD.? 8192
LOCATION WROTE READ
CHECK OK
CHECK OK

CHECK OK

Fig. 10 .3 A simple memory test program in BASIC
that can be used if the system's operating system can
still run with the terminal.

the test, the program outputs the phrase CHECK OK
if all memory locations appear good and then continues
testing the board. A thorough test of the board requires
about 10 passes. If an error occurs, the location is printed
out along with the number written into the memory and
the number read out from the memory.

In many cases, however, your system will probably
not be able to run BASIC. But, you might be able to
load a machine-language program, either from a serial
port or via the front panel, that can perform a similar
test function. The program shown in Fig. 10.2 is de-

signed to be entered and operate via a terminal with a
minimal amount of memory and effort. It is excerpted
from the monitor program developed by Vector Graphic
Corp. and is assembled to run in the lowest 256 bytes
of memory. Execution should start at location 000016.
An asterisk will be output if the routines are entered
properly. PTCN is the output routine for a Processor
Technology 3P + S I/O board (with the status inverted)
that is used in the computer system to communicate
with the terminal. The same routine can be used for the
Pertec rev 1 SIO. RDCN is the input routine. If you
are using a board with a programmable USART, you
must also initialize it in addition to changing the mask,
jump condition, and port bits.

After the * is output, enter four hex characters for
the length of the memory block to be tested (2000 for
an 8k board) and four digits for the starting address of
the board. Spacing is automatic. Typing any characters
other than 0 to 9 or A to F will cause the program to do
strange things. A reset will terminate the execution of
the test. The program itself generates a 216 - 1 byte
pseudorandom number sequence, writes a portion of it
in the block of memory, and then regenerates the se-
quence from the same point to compare with what is
read from memory. If the pass is correct, a new portion
of the sequence is written into memory and checked.
Errors are printed out with the address, what was written
into memory, and what was read out. Possible memory
problems include solder bridges between data or ad-
dress lines, chips mounted on the board backward, poor
seating in the socket, broken printed-circuit patterns,
a defective chip, or just a poor solder connection. If you
cannot locate the defective memory chip visually or by
using the program on the entire board, try removing
half the memory chips (assuming they're all mounted
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in sockets) and running the test program on the reduced
block size. Keep reducing the block size until the de-
fect can be found.

Replacing the defective component can be a rela-
tively simple job of pulling it out of a socket and plug-
ging in a replacement. However, before installing a new
component, make sure there are no other defects on the
board that will cause the new part to fail.

If you've a mind to do all your own circuit trouble-
shooting, you'll have to make a pretty heavy invest-
ment in test equipment. In addition to the workhorse
multimeter, you'll need a dual-channel 20-MHz scope,
a logic probe, a timing generator, an extender card,
some tiny test clips, several logic clips, and some power
supplies. Unless you have a pretty thorough knowledge
of digital electronic circuits and test techniques, you
should not attempt to service your own equipment aside
from possibly replacing a board. Most equipment pur-
chased comes with a factory guarantee that covers just
about every fault that can occur. Even local computer
stores usually offer repair services that can do rush
repair jobs when you can't wait for normal factory re-
pair turnarounds.

Software Bugs: Gremlins That Can Drive
You Crazy

If, after all the testing of the hardware, it seems to
be operating properly, but you just can't get that new
program you bought or wrote to run properly, you've
got software bugs. Depending on the language you're
working in, there are different levels of problems that
might be in the software. For instance, if a program runs
on a friend's system but not on yours, there are two pos-
sible problems. First, you might be loading it into an
area of memory that will throw off all the addresses re-
ferred to in the program. For instance, a fixed program
instruction that tells the processor to fetch the data
from address XXXX will not find the information in that
location if the loading procedure actually put the data
in location YYYY.

Another possibility is that the system is configured
differently than the one on which the program runs-
the ports used for terminals, printers, or auxiliary de-
vices could be assigned differently. All this makes the
use of someone else's program quite chancy. Adjusting
the port addresses is a necessity when you are trying to
use a high-level language such as BASIC. Pertec, for
instance, assumes a specific system configuration-if
the system configuration is different, changes in the as-
sembly-level routines must be made so that when the
program outputs a command to a specific peripheral,
that peripheral will receive the instruction and data.

Whether you work in machine, assembly, or high-
level languages, there are three possible problems that
can occur when you try to run a program and it doesn't
work:

10 LET X=1
20 PRIMT X
30 END
RUN
SYNTAX ERROR

Fig. 10 .4 A simple program that contains an error.

1. Errors in the program prevent the program from
running at all.

2. Errors in the program permit it to start running
then abruptly terminate at an unexpected point.

3. Errors that permit the program to run com-
pletely but cause the computer to produce an
incorrect result.

The process of correcting a program that does not
work is called debugging and often requires much pa-
tience since many of the problems are not immediately
apparent. Since techniques of troubleshooting software
are similar for machine, assembly, and high-level lan-
guages, let's look at some of the problems you could
face when trying to debug programs that are written in
BASIC.

Some of the simplest errors that prevent a program
from running are typing errors that can occur when pro-
grams are entered on a terminal. For instance, the sim-
ple program shown in Fig. 10.4 will cause an error mes-
sage from most BASIC operating systems since there is
a spelling error in one of the lines (line 20). Altair Disk
BASIC provides various error messages for many of the
common operating errors that can occur. After an error
does occur, BASIC returns to the command level and
types OK. Variable values and the program text remain
intact, but the program cannot be continued by the
CONT command. In the 4k and 8k versions of BASIC,
all GOSUB and FOR context is lost . However, the pro-
gram can be continued by direct mode GOTO com-
mands. When an error occurs in a direct statement, no
line number is printed. Error messages have the follow-
ing format:

Direct statement error: ?XX ERROR
Indirect Statement : ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line num-
ber where the error occurred . There are about 45 error
messages available in BASIC from Pertec to help you
diagnose a faulty program. Each error message con-
sists of an error code , an extended error message, and
a number . For the extended Disk BASIC, all error codes
apply. Here are the available messages that can help
you track down a bug in your program:

BS Subscript out of range 9

The indicator means that an attempt was made to ref-
erence an array element that is outside the dimensions
of the array . This message will also appear if the wrong
number of dimensions is used in an array reference.
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DD Redimensioned array 10

After an array is dimensioned another dimension state-
ment for the same array will cause this error indicator
to appear. This error often occurs if an array has been
given the default dimension of 10 and later in the pro-
gram another statement tries to dimension the array.

FC Illegal function call 5

The parameter passed to a math or string function was
out of range. FC errors can occur due to:

1. a negative array subscript
2. an unreasonably large array subscript (greater

than 32,767)
3. LOG with a negative or zero argument
4. SQR with a negative argument
5. A**B with A negative and B not an integer
6. a call to USR before the address of a machine

language subroutine has been entered
7. calls to MID$, LEFTS, RIGHT$, INP, OUT,

WAIT, PEEK, POKE, TAB, SPC, STRINGS,
SPACES, INSTR, or ON . . . GOTO with an
improper argument

ID Illegal direct 12

INPUT and DEF are illegal in the direct mode except
for INPUT in the extended version of BASIC.

NF Next without FOR 1

The variable in a NEXT statement corresponds to no
previously executed FOR statement.

OD Out of data 4

This code indicates that a READ statement was exe-
cuted but all of the data statements in the program
have already been read. Either the program tried to
read too much data or insufficient data were included
in the program.

OM Out of memory 7

This indicator appears when the program is too large
or has too many variables, too many FOR loops, too
many GOSUBs, or too complicated expressions.

OV Overflow 6

This indicates that the result of a calculation was too
large to be represented in the format available to the
computer . If an underflow occurs, zero is given as the
result and execution continues without any error mes-
sage being printed.

SN Syntax error 3

Missing parenthesis in an expression, illegal character
in a line, incorrect punctuation, etc., will cause this
error code to be printed out.

RG Return without GOSUB 3
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A RETURN statement was encountered before a pre-
vious GOSUB statement was executed; the program
has nowhere to return to.

UL Undefined line 8

The line reference in a GOTO, GOSUB, IF ... THEN ...
ELSE, or DELETE was to a line that does not exist.

/0 Division by zero 11

This error indicator can occur with integer division and
MOD as well as floating point division. Zero to a nega-
tive power also causes a /0 error.

CN Can't continue 17

Attempt to continue a program when no continuation
exists, an error occurred, or after a modification was
made to the program.

LS String too long 15

An attempt was made to create a string more than 255
characters long.

OS Out of string space 14

String variables exceed amount of string space allo-
cated for them. Use the CLEAR command to allocate
more string space or use smaller strings or fewer string
variables.

ST String formula too complex 16

A string expression was too long or too complex. Break
it into two or more shorter expressions.

TM Type mismatch 13

The left-hand side of an assignment statement was a
numeric variable and the right-hand side was a string,
or vice versa. Or, a function that expected a string
argument was given a numeric one or vice versa.

UF Undefined user function 18

Reference was made to a user-defined function that
had never been defined.

Missing operand 20

During evaluation of an expression, an operator was
found with no operand following it.

No resume 19

BASIC entered an error-trapping routine, but the
program ended before a RESUME statement was
encountered.

Resume without error 21

A RESUME statement was encountered, but no error-
trapping routine had been entered.

Unprintable error 22

An error condition exists for which there is no error
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message available. Probably there is an ERROR state-
ment with an undefined error code.

Line buffer overflow 23

An attempt was made to input a program or data line
that has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

Field overflow 50

All disk storage is exhausted on the current disk ; delete
some old files and try again.

Input past end 61

An INPUT statement was executed after all the data on
a file had been input . This will happen immediately
if an INPUT is executed for a null (empty) file. Use of
the EOF function to detect end of file will avoid this
error.

An attempt was made to allocate more than 128 char-
acters of string variables in a single FIELD statement.

Internal error 51

Internal error in Disk BASIC. Report conditions under
which errors occurred and all relevant data to Pertec
software department. This error can also be caused by
certain kinds of disk I/O errors.

Bad file 52

An attempt was made to use a file number that speci-
fies a file that is not open or that is greater than the
number of files entered during the initialization dialog.

File not found 53

Reference was made in a LOAD, KILL, or OPEN state-
ment to a file that did not exist in the disk specified.

Bad file mode 54

An attempt was made to perform a PRINT to a random
file, to open a random file for sequential output, to per-
form a PUT or GET on a sequential file, to load a ran-
dom file, or to execute an OPEN statement where the
file mode is not I, 0, or R.

File already open 55

A sequential output mode OPEN for a file was issued
for a file that was already open and had never been
closed, or a KILL statement was given for an open file.

Disk not mounted 56

An 1/0 operation was issued for a file that was not on
a disk already in place.

Disk I/O error 57

An I/O error occurred in disk X; a sector read (check-
sum) error occurred 18 consecutive times.

Set to non-disk string 58

An LSET or RSET was given for a string variable that
had not been previously mentioned in a FIELD
statement.

Disk already mounted 59

A MOUNT was issued for a disk that was already
mounted but never unloaded.

Disk full 60

Bad record number 62

In a PUT or GET statement, the record number is
either greater than the allowable maximum (2046) or
equal to zero.

Bad file name 63

A file name of 0 characters (null) or a file name whose
first byte was 0 or 2778 (2551o), or a file name with more
than eight characters was used as an argument to LOAD,
SAVE, KILL, or OPEN.

Mode mismatch 64

Sequential OPEN for output was executed for a file
that already existed on the disk as a random (R) mode
file, or vice versa.

Direct statement in file 65

A direct statement was encountered during a LOAD
of a program in ASCII format; the LOAD is terminated.

Too many files 66

A SAVE or OPEN (0 or R) was executed that would
create a new file on the disk, but all 255 directory en-
tries were already full; delete some files and try again.

Out of random blocks 67

An attempt was made to have more random files open
at once than the number of random blocks that were
allocated during initialization by the response to the
"NUMBER OF RANDOM FILES?" question.

File already exists 68

The new file name specified in the NAME statement has
the same name as another file that already exists on
the disk; try using a different name.

File link error 69

During the reading of a file, a sector was read that did
not belong to the file.

Now, armed with all the error codes, you can diag-
nose the problems that come up. However, knowing
what the problem is and being able to do something
about it are two totally different things. For instance,
to correct the problem in the program shown in Fig.
10.4, all you must do is replace line 20 with the cor-
rectly spelled command-PRINT X. When the program
is run the first time with the error, the computer will
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10 READ A AND B
20 PRINT A,B
30 DATA 4,5,7,-11
40 GO TO 10
50 END
RUN
SYNTAX ERROR

(A)

10 READ A,B
RUN
4 5

7 -11

(B)

Fig.10 .5 Sample program with a syntax error (a).
Corrected program and resultant output (b).

10 LET A=10

20 LET B=5
30 LET C=AB
40 PRINT C
50

RUN

END

Fig. 10 .6 Multiplication program that contains an
error.

probably come back with a syntax error in line 20 error
statement. Similarly for the program shown in Fig. 10.5a.
There is an error in line 10; the READ statement can-
not have the structure shown. To correct the statement
simply type: 10 READ A,B and hit the carriage return
and give the RUN command again; the program will now
function properly. The READ statement as originally
defined is read by BASIC as just a READ A and the
characters after the A are ignored. When corrected,
the printout as shown in Fig. 10.5b results.

Another common omission in mathematical ex-
pressions are the various symbols necessary for the
computer to perform the desired operations. For in-
stance, the program shown in Fig. 10.6 has the com-
puter multiply two numbers and print out the result.
However, line 30 contains the product expression, but
does not have the asterisk between the A and B, thus
not signifying the desired multiplication. By replacing
line 30 with LET C = A*B the program will run prop-
erly. If you are not sure that the program has totally
correct statements that conform to BASIC format, use
the LIST command any non-BASIC statement will
automatically be eliminated and your listing will con-
sist of only totally BASIC-compatible statements.

To help troubleshoot programs that are under de-
velopment, it could be quite useful to include break-
points-instructions in the program that cause it to stop
execution so that you can check some intermediate
values. If you decide against breakpoints, another pos-
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10 PRINT "PROGRAM EXECUTION HAS BEGUN"
20 LET X=2
30 READ A,B,C
40 PRINT A*BtX

50 PRINT "C=";C

60 PRINT "PROGRAM HAS REACHED LINE 60"
70 READ Y
80 PRINT Y
90 DATA 3,17,11
100

RUN

END

PROGRAM EXECUTION HAS BEGUN
867
C=11
PROGRAM HAS REACHED LINE 60

OUT OF DATA IN LINE 70

Fig.10 .7 Simple program with breakpoints that help
monitor program operation.

sibility is for the program to print out some comments
as it gets further down the line and give you some indi-
cation, aside from the error statements, as to how far
the program was executed. For instance, the program
in Fig. 10.7 will start to run and then terminate after
line 70 since it runs out of data to read for the READ X
statement. Not all computers will print out the error
statement after the last data statement has been read.
But, they will automatically terminate execution. Il-
legal operations such as trying to raise 0 to the zero
power will result in execution termination and there are
many such cases that only experience will help you
avoid.

There are other programming errors that will per-
mit a program to run, but provide erroneous results.
Some simple examples of such programs are shown in
Fig. 10.8. Here are two examples of small things that
can go wrong in programs. In Fig. 10.8a, there are four
LET statements but nowhere is there a PRINT state-
ment so that the computer will output the results of
the calculations in the LET statements. To correct this
problem all that must be done is the addition of a PRINT
statement after the calculations, say in line 45, that
might read PRINT A; B; C; D. The second program,
shown in Fig. 10.8b, is a bit more complex. There is
nothing really wrong with it except that every time it
loops through the READ and PRINT statements it re-
peats the column headings-a waste of time and paper.
So, to amend this program, just change the address of
the GOTO statement of line 60 so that it loops back to
the line just after the PRINT statement. Thus, line 60
should read GOTO 20 and the column headings will only
be printed out the first time the program goes through
its routine. But there's still another problem in the pro-
gram-every time two numbers are read and used, the
pairs indicator should increment so the first time the
printout should read 1 PAIRS SO FAR, 2 PAIRS SO
FAR the next time, and so forth. The problem stems
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10 LET A=10

20 LET B=5

30 LET C=At2

40 LET D=Bt2

50 END

RUN

The S-100 Bus Handbook

DONE

10 PRINT "X Y SUM PROD"
20 LET Z=0
30 READ X,Y
40 LET Z=Z+1

50 PRINT X ;Y;X-Y:X* Y;Z;" PAIRS SO FAR"

60 GO TO 10
70 DATA 10,20,11,9
80 DATA 1 , 2,-45,18
90

RUN

A

END

B SUM PROD

10

A

20

B

30

SUM

200

PROD

1 PAIRS SO FAR

11

A

4

B

20

SUM

99

PROD

1 PAIRS SO FAR

1

A

2

B

3

SUM

2

PROD

1 PAIRS SO FAR

-45 18 -27 -81 1 PAIRS SO FAR

OUT OF DATA IN LINE 30

Fig.10 .8 Some simple program errors are in these
programs. Although these programs will run on the
computer, they will produce incorrect results.

from the LET statement in line 20 which is looped back
to each time the program finishes its PRINT routine.
Again, line 60 must be changed so that the program
loops back to line 30, thus avoiding the reprinting of
the column headings and the resetting of the Z counter
on every loop. The revised line 60 should then read
GOTO 30.

Whenever you write programs, try to make sure
that there are always lines for the program to loop back
to, that there are always END statements, and that there
are always enough data to be read in. Arrays should al-
ways be dimensioned and never redimensioned in the
same program. The best teacher, of course, is experi-
ence. But unless you make the mistakes and go through
the trouble of debugging your own programs, you'll
never really understand the problems of writing and
running your own programs.

There are several tricks you can use to help mini-
mize the number of programming errors you might make.
For instance, you can use a scratch pad and pencil to
keep track of the GOSUB, RETURN, GOTO, CALL,
and other branching instructions that are often the
places where errors occur. By keeping this separate list,
you have, at a glance, all the locations where program
flow can divert to. Similarly, you can keep a list of vari-
able names, thus making sure you don't duplicate the
names you are already using.

There are dozens of books and courses available to
you that can provide much more detail about the ins
and outs of programming in BASIC and other languages.
In fact, by the time this book is in your hands, more
powerful languages, such as FORTRAN, PASCAL,
COBOL, and FORTH will readily be available for the
microcomputer user.
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Basic Electronics and Integrated Circuits
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MacMillan Co., 1973.
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Publishing Co., 1975.
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London: Butterworth & Co., 1971.
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Reston, VA: Reston Publishing Co., 1977.
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1974.

Ryder, J., and Thomson, C. Electronic Circuits and
Systems. Englewood Cliffs, NJ: Prentice-Hall,
1976.
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Hayden Book Co., 1976.
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Ridge Summit, PA: Tab Books, 1977.
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Albrecht, Bob. BASIC. New York: Wiley, 1978.
Brown, Jerald. Instant BASIC. Menlo Park, CA:

Dymax, 1977.
Cassel, Don. BASIC Programming in Real Time.

Reston, VA: Reston Publishing Co., 1975.
Coan, James. Advanced BASIC. Rochelle Park, NJ:

Hayden Book Co., 1976.
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Book Co., 1970.

Cook, G.; Wade, B.; and Upton, C. Computer Account-
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Cookbook. Milford, CT: Scelbi Computing.
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Books, 1977.
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ments, 1977.
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ples Computer Co., 1977.
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Ridge Summit, PA: Tab Books, 1977.
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1975.
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Beach, FL: Camelot Publishers, 1977.
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1977.
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Microprocessors

Barden, William, Jr. How to Buy and Use Minicom-
puters and Microcomputers. Indianapolis: Howard
Sams & Co., 1976.

Bishop, Ron. Basic Microprocessors and the 6800.
Rochelle Park, NJ: Hayden Book Co., 1979.

Lancaster, Don. TV Typewriter Cookbook. Indianap-
olis: Howard Sams & Co., 1976.

Martin, Donald. Microcomputer Design. Northbrook,
IL: Martin Research, 1976.

Osborne, Adam. An Introduction to Microcomputers.
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Associates, 1976.
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Rockwell, Charles. An Introduction to Microproces-
sors. Microlog, 1977.

Solomon, L., and Veit, S. Getting Involved with Your
Own Computer: A Guide for Beginners. Short Hills,
NJ: Enslow Publishers, 1977.

Waite, Mitchell, and Pardee, Michael. Microcomputer
Primer. Indianapolis: Howard Sams & Co., 1976.

Zaks, Rodnay, and Lesea, Austin. An Introduction to
Personal Computing. Berkeley: Sybex, 1977.

Bit Slices. Berkeley: Sybex, 1977.
Industrial Microprocessor Systems. Berkeley:

Sybex, 1977.
Interfacing Techniques. Berkeley: Sybex, 1977.
International Microprocessor Dictionary. Berke-

ley: Sybex, 1977.
Microprocessor Interfacing Techniques. Berke-

ley: Sybex, 1977.
Microprocessors. Berkeley: Sybex, 1977.
Microprocessors, From Chips to Systems. Berke-

ley, Sybex, 1977.
Military Microprocessor Systems. Berkeley: Sybex,
1977.

Programming and Microprogramming. Berke-
ley: Sybex, 1977.

Cassette Sources

Introduction to Microprocessors. Berkeley: Sybex, 1977.
Programming Microprocessors. Berkeley: Sybex, 1977.

Advanced Digital Theory and
Computer Architecture

Chirlian, Paul. Analysis and Design of Digital Circuits

and Computer Systems. Champaign, IL: Matrix
Publishers, 1976.

Abd-Elfallah, M., Abd Alla; and Arnold, Meltzer. Prin-

ciples of Digital Computer Design. Englewood
Cliffs, NJ: Prentice-Hall, 1976.

Favert, Andrew. Digital Computer Principles and Ap-
plications. New York: Van Nostrand Reinhold,
1972.

Fuori, William. Introduction to the Computer. Engle-
wood Cliffs, NJ: Prentice-Hall, 1977.

Gothmann, William. Digital Electronics. Englewood
Cliffs, NJ: Prentice-Hall, 1977.

Gschwind, Hans, and McCluskey, Edward. Design of
Digital Computers. New York: Springer-Verlag,
1975.

Lenk, John. Handbook of Logic Circuits. Reston, VA:
Reston Publishing Co., 1972.

Libes, Sol. Fundamentals and Applications of Digital
Logic Circuits. Rochelle Park, NJ: Hayden Book
Co., 1975.

Mowle, Fredric. A Systematic Approach to Digital
Logic Design. Reading, MA: Addison-Wesley, 1976.

Peatman, John. The Design of Digital Systems. New
York: McGraw-Hill, 1972.

Roney, P.; Larsen, D.; and Titus, J. The Bugbooks
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1976.

Sloan, M. Computer Hardware and Organization. Chi-
cago: Science Research Associates, 1976.

Stone, Harold. Introduction to Computer Architecture.
Chicago: Science Research Associates, 1975.

Tocci, Ronald. Digital Systems Principles and Appli-
cations. Englewood Cliffs, NJ: Prentice-Hall, 1977.

Troubleshooting

Gilmore, Charles. Understanding and Using Modern
Electronic Servicing Test Equipment. Blue Ridge
Summit, PA: Tab Books, 1976.

Horowitz, Mannie. How to Troubleshoot and Repair
Electronic Test Equipment. Blue Ridge Summit,
PA: Tab Books, 1974.

Lenk, John. Handbook of Practical Electronic Tests
and Measurements. Englewood Cliffs, NJ: Prentice-
Hall, 1969.

Mandl, Matthew. Handbook of Electronic Testing,
Measurement and Troubleshooting. Reston, VA:
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APPENDIX B

Commonly Used Components and
Suppliers of 5-100 Bus Systems

Low-Power Schottky TTL 74LS54 4-wide AND-OR-INVERT gate
74LS55 ut AND-OR-INVERT2-wide 4-in ate

74LS00 Quad 2-input NAND gate 74LS73
gp,

Dual J-K flip-flop with clear
74LS01 Quad 2-input NAND gate (open collector

output)
74LS74 Dual D positive edge-triggered flip-flop with

preset and clear
74LS02 Quad 2-input NOR gate 74LS75 Quad D latch
74LS03 Quad 2-input NAND gate (open collector 74LS76 Dual J-K flip-flop with preset and clear

output) 74LS78 Dual J-K flip-flop with preset and common
74LS04 Hex inverter clear and clock
74LS05 Hex inverter (open collector output) 74LS83 4-bit full adder
74LS08 Quad 2-input AND gate 74LS85 4-bit magnitude comparator
74LS09 Quad 2-input AND gate (open collector 74LS86 Quad Exclusive-OR gate

output) 74LS90 BCD or decade counter
74LS 10 Triple 3-input NAND gate 74LS92 Divide by 12 counter
74LS11 Triple 3-input AND gate 74LS93 Binary counter
74LS12 Triple 3-input NAND gate (open collector 74LS95 4-bit shift register

output) 74LS96 5-bit shift register
74LS13 Dual 4-input NAND Schmitt triggers 74LS 107 Dual J-K master slave flip-flop with clear
74LS14 Hex Schmitt trigger 74LS 109 Dual J-K positive edge triggered flip-flop
74LS15 Triple 3-input AND gate (open collector with preset and clear

output) 74LS 112 Dual J-K negative-edge-triggered flip-flop
74LS20 Dual 4-input NAND gate with preset and clear
74LS21 Dual 4-input AND gate 74LS 113 Dual J-K negative-edge-triggered flip-flop
74LS22 Dual 4-input NAND gate (open collector with preset

output) 74LS 114 Dual J-K negative-edge-triggered flip-flop
74LS26 Quad 2-input high-voltage NAND gate with preset and common clear and clock
74LS27 Triple 3-input NOR gate 74LS 122 Retriggerable one-shots with clear
74LS28 Quad 2-input NOR buffer 74LS 123 Dual retriggerable one-shots with clear
74LS30 8-input NAND gate 74LS 124 Dual voltage-controlled oscillator
74LS32 Quad 2-input OR gate 74LS 125 Three-state quad buffers
74LS33 Quad 2-input NOR gate (open-collector 74LS 126 Three-state quad buffers

output) 74LS 132 Quad 2-input NAND Schmitt triggers
74LS37 Quad 2-input NAND buffers 74LS 133 13-input NAND gate
74LS38 Quad 2-input NAND buffers (open collector

outputs)
74LS 136 Quad Exclusive-OR gate (open-collector

outputs)
74LS40 Dual 4-input NAND buffers 74LS 138 1-of-8 decoder/demultiplexer
74LS42 1-of-10 decoder 74LS 139 Dual 1-of-4 decoder
74LS47 BCD to 7-segment decoder/driver (open 74LS 145 1-of-10 decoder

collector output) 74LS 148 8 line to 3 line encoder
74LS48 BCD to 7-segment decoder/driver 74LS 151 8-input multiplexer

74LS51 Dual 2-wide, 2-input AND-OR-INVERT 74LS 153 Dual 4-input multiplexer

gate 74LS 154 1-of-16 decoder
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74LS 155 Dual 1-of-4 decoder 74LS365 Hex buffer with three-state output and com-
74LS 156 Dual 1-of-4 decoder (open collector

output)
mon enable

74LS366 Hex inverter with three-state output and
74LS 157 Quad 2-input multiplexer, noninverting common enable
74LS 158 Quad 2-input multiplexer, inverting 74LS367 Hex buffer with three-state output (set up as
74LS 160 BCD counter with asynchronous reset 4-bit and 2-bit groups)
74LS 161 4-bit binary counter with asynchronous reset 74LS368 Hex inverter with three-state output (set up
74LS 162 BCD counter with synchronous reset as 4-bit and 2-bit groups)
74LS 163 4-bit binary counter with synchronous reset 74LS374 Octal D flip-flop (low-voltage output)
74LS 164 8-bit serial-in/parallel-out shift register 74LS375 4-bit bistable latch
74LS 168 Synchronous BCD decade up/down counter 74LS377 Octal D flip-flop with enable
74LS 169 Synchronous 4-bit binary up/down counter 74LS378 Hex D flip-flop with enable
74LS 170 4-bit by 4-bit register file (open collector

output)
74LS381 4-bit ALU/function generator
74LS386 Quad Exclusive-OR gate

74LS 173 Quad D register (three-state output) 74LS390 Dual decade counter
74LS 174 Hex D flip-flop with clear 74LS393 Dual 4-bit binary counter
74LS 175 Quad D flip-flop with clear 74LS395 4-bit cascadable shift register (three-state
74LS181 4-bit arithmetic and logic unit output)
74LS 190 Decade up/down counter 74LS399 Quad 2-input multiplexer with storage
74LS191 Binary up/down counter 74LS490 Dual decade counter
74LS 192 Up/down decade counter 74LS670 4-bit by 4-bit register file (three-state output)
74LS193 Up/down binary counter
74LS 194 4-bit R / L shift register
74LS 195 4-bit shift register 4000 Series CMOS
74LS 196 Decade counter

4000 Dual 3-input NOR gate plus inverter
74LS 197 4-bit binary counter

4001 Quad 2-input NOR gate
74LS221 Dual one-shots with Schmitt trigger inputs

4002 Dual 4-input NOR gate
74LS240 Octal inverting driver (three-state output)

4006 18-bit static shift register
74LS241 Octal noninverting driver (three-state output)

4007 Dual complementary pair plus inverter
74LS242 Quad inverting bus transceiver

4008 4-bit full adder
74LS243 Quad noninverting bus transceiver

4011 Quad 2-input NAND gate74LS244 Octal noninverting driver (three-state output)
4012 Dual 4- input NAND gate

74LS247 BCD to 7-segment decoder/driver (open
collector output) 4013 Dual D flip-flop

4014 8-bit static shift register
74LS248 BCD to 7-segment decoder/driver

4015 Dual 4-bit static shift register74LS249 BCD to 7-segment decoder/driver (open
collector output) 4016 Quad analog switch/quad multiplexer

4017 Decade counter/divider
74LS251 8-input multiplexer (three-state output)

4018 Presettable divide-by-N counter74LS253 Dual 4-input multiplexer (three-state output)
4020 14-bit binary counter74LS257 Quad 2-input multiplexer (three-state output)
4021 8-bit static shift register74LS258 Quad 2-input multiplexer (three-state output)
4022 Octal counter/divider74LS259 8-bit addressable latch
4023 Triple 3-input NAND gate74LS260 Dual 5-input NOR gates
4024 Seven-stage ripple counter74LS261 2-bit by 4-bit parallel binary multiplier
4025 Triple 3-input NOR gate74LS266 Quad 2-input Exclusive-NOR gate (open

collector output) 4027 Dual J-K flip-flop
4028 BCD-to-decimal decoder74LS273 Octal D latch with clear
4032 Triple serial adder (positive logic)

74LS279 Quad S-R latch
4034 8-bit universal bus register

74LS281 4-bit parallel binary accumulator
4035 4-bit shift register

74LS283 4-bit full adder
4038 Triple serial adder (negative logic)

74LS290 Decade counter 4040 12-bit binary counter
74LS293 4-bit binary counter 4042 Quad latch
74LS295 4-bit shift register (three-state output) 4043 Quad NOR R-S latch
74LS298 Quad 2-input multiplexer (open collector 4044 Quad NAND R-S latch

output) 4046 Phase-locked loop
74LS299 8-bit universal parallel- in/parallel-out shift 4049 Hex inverter/buffer

register 4050 Hex buffer
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4051 8-channel analog multiplexer 4521 24-stage frequency divider
4052 Dual 4-channel analog multiplexer 4522 Programmable BCD divide-by-N counter
4053 Triple 2-channel analog multiplexer 4524 256 X 4-bit read-only memory
4066 Quad analog switch 4526 Programmable binary divide-by-N counter
4068 8-input NAND gate 4527 BCD rate multiplier
4069 Hex inverter 4528 Dual monostable multivibrator
4070 Quad Exclusive-OR gate 4529 Dual 4-channel analog data selector
4071 Quad 2-input OR gate 4530 Dual 5-input majority logic gate
4072 Dual 4-input OR gate 4531 12-bit parity tree
4073 Triple 3-input AND gate 4532 8-bit priority encoder
4075 Triple 3-input OR gate 4534 Real-time 5-decade counter
4076 Quad D-type register 4536 Programmable timer
4077 Quad Exclusive-NOR gate 4537 256 X 1-bit static random access memory
4078 8-input NOR gate 4538 Dual precision monostable multivibrator
4081 Quad 2-input AND gate 4539 Dual 4-channel data selector/ multiplexer
4082 Dual 4-input AND gate 4541 Programmable oscillator /timer
4093 Quad 2-input NAND Schmitt trigger 4543 BCD-to-7-segment latch / decoder / driver
4160 Decade counter (asynchronous clear) 4549 Successive approximation register
4161 Binary counter (asynchronous clear) 4552 64 X 4-bit static RAM
4162 Decade counter (synchronous clear) 4553 3-digit BCD counter
4163 Binary counter (synchronous clear) 4554 2 X 2 bit parallel binary multiplier
4174 Hex D flip-flop 4555 Dual binary to 1-of-4 decoder
4175 Quad D flip-flop 4556 Dual binary to 1-of-4 decoder (inverting)
4194 4-bit universal shift register 4557 1 to 64-bit variable-length shift register
4408 Binary-to-phone pulse converter 4558 BCD-to-7-segment decoder
4409 Binary-to-phone pulse converter 4559 Successive approximation register
4410 2-of-8 tone encoder 4560 NBCD adder
4411 Bit-rate frequency generator 4561 9's complementer
4412 Universal low-speed modem 4562 128-bit static shift register
4415 Quad precision timer/divider 4566 Industrial time base generator
4419 2-of-8 keypad-to-binary encoder 4568 Phase comparator/programmable counter
4422 Remote control transmitter 4569 Dual programmable BCD/binary counter
4431 12-bit a/d converter 4572 Hex gate
4433 3- digit a/ d converter 4580 4 X 4 multiport register
4435 3-1, digit a/d logic subsystem 4581 4-bit arithmetic-logic unit
4440 LCD watch/clock circuit 4582 Look-ahead carry block
4450 Oscillator 216 divider/buffer 4583 Dual Schmitt trigger
4451 Oscillator/ divider/ buffer 4584 Hex Schmitt trigger
4452 Digitally trimmed frequency divider 4585 4-bit magnitude comparator
4490 Hex contact bounce eliminator
4501 Triple gate
4502 Strobed hex inverter/buffer
4503 Hex three-state buffer Microprocessor Manufacturers

4505 64 X 1-bit static RAM Advanced Micro Devices
4506 Dual expandable AOI gate 901 Thompson Place
4507 Quad Exclusive-OR gate Sunnyvale, CA 94086
4508 Dual 4-bit latch (408) 732-2400
4510 BCD up/down counter
4511 BCD-to-7-segment latch/decoder/driver American Microsystems
4512 8-channel data selector 3800 Homestead Road
4514 4-bit latch/4-to-16 line decoder (high) Santa Clara, CA 95051
4515 4-bit latch/4-to-16 line decoder (low) (408) 246-0330
4516 Binary up /down counter
4517 Dual 64-bit static shift register Data General
4518 Dual BCD up counter Route 9
4519 4-bit AND/OR selector Southboro, MA 01772

4520 Dual binary up counter (617) 485-9100
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EMM Semiconductor
3883 N. 28th Avenue

Phoenix, AZ 85017

(602) 968-4431

Fairchild Semiconductor
464 Ellis Street
Mountain View, CA 94042
(415) 962-3816

Ferranti
Western Road, Bracknell
Berkshire, RG12 IRA, England

Fujitsu Ltd.
6-1, Marunouchi 2 Chome
Chiyoda-ku
Tokyo, Japan

General Instrument
600 West John Street
Hicksville, NY 11802
(516) 733-3130

Harris Semiconductor
P.O. Box 883
Melbourne, FL 32901
(305) 727-5400

Hitachi, Ltd.
Nippon Building
No. 6-2, 2 Chome,
Ohtemachie, Chiyoda-ku
Tokyo 100, Japan

Hughes Aircraft Co.
Microelectronic Products Div.
500G Superior Avenue
Newport Beach, CA 92663
(714) 548-0671

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
(408) 987-8080

Intersil
10710 North Tantau Avenue
Cupertino, CA 95014
(408) 996-5000

ITT Semiconductors
Maidstone Road
Footscray Sidcup
Kent, England

Matsushita
1006 Kadoma , Osaka, Japan

Monolithic Memories
1 165 East Arques Avenue
Sunnyvale , CA 94086
(408) 739-3535

MOS Technology
Valley Forge Corporate Center
950 Rittenhouse Road
Norristown, PA 19401
(215) 666-7950

Mostek
1215 West Crosby Road
Carrollton, TX 75005
(214) 242-0444

Motorola Semiconductor
3501 Ed Bluestein Boulevard
Austin, TX 78721
(512) 928-2600

Motorola Semiconductor
2002 West 10th Place
Tempe, AZ 85282
(602) 244-3466

National Semiconductor
2900 Semiconductor Drive
Santa Clara, CA 95050
(408) 737-5000

Nippon Electric Co.
33-1, Shiba Gochome
Minato-ku,
Tokyo 108, Japan

NEC Microcomputers
5 Militia Drive
Lexington, MA 02173
(617) 862-6410

RCA
Box 3200, Route 202
Somerville, NJ 08876
(201) 685-6423

Raytheon
350 Ellis Street
Mountain View, CA 94040
(415) 968-9211

Rockwell International
P.O. Box 3669
RCOI-Dept. 720
Anaheim , CA 92803
(714) 632-2321

Siemens AG
Central Information Dept.
Oskar-von-Miller Ring 18
D-8000 Munchen 2
Federal Republic of Germany

Signetics
811 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-7700
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Solid State Scientific
Montgomeryville Industrial Park
Montgomeryville, PA 18936
(215) 855-8400

Synertek
3050 Coronado Drive
Santa Clara, CA 95051
(408) 984-8900

Texas Instruments
13500 North Central Expressway
Dallas, TX 75222
(214) 238-2481

Thomson-CSF, Sescosem
101 Boulevard Murat
75781 Paris Cedex 16
France

Toko, Inc. (Toko America)
1-17 Higashiyukigaya
2 Chome, Ohta-ku
Tokyo 145, Japan

Toshiba Transistor Works
1 Komukai Toshiba-cho
Kawasaki-shi Kanagana-ken
Japan

Western Digital
3128 Red Hill Avenue
Newport Beach, CA 92663
(714) 557-3550

Zilog Microcomputers
10460 Bubb Road
Cupertino, CA 95014
(408) 446-4666
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S-100 Computer and Board Manufacturers

Advanced Computer Products, P.O. Box 17329K,
Irvine, CA 92713, (714) 558-8813 (memory cards)

Artec Electronics, 605 Old Country Rd., San Carlos, CA
94070, (415) 592-2740 (memory and breadboards)

Associated Electronics, 1885 W. Commonwealth, Unit G,
Fullerton, CA 92633, (714) 879-7541 (memory
boards)

Base 2, Inc., P.O. Box 9941, Marian De1Ray, CA 90291,
(213) 822-4499 (memory boards)

The Bit Stop, P.O. Box 973, Mobile, AL 36601
Canada Systems, P.O. Box 516, La Canada, CA 91011,

(213) 790-7957 (clock and control boards)
CMC Marketing/TEl Corp., 7231 Fondren Rd., Hous-

ton, TX 77036, (713) 774-9526 ( mainframe)
Central Data Corp., 1207 N. Hagan St., Champaign, IL

61820, (217) 359 -8010 (memory boards)
Computalker Consultants, P.O. Box 1951, Dept. K,

Santa Monica, CA 90406, (213) 392-5230 (speech
synthesizer)

Compt/Time, P.O. Box 417, Huntington Beach, CA
92646, (714) 638-2094 (high-speed malt processor)

Cromemco, 2400 Charleston Road, Mt. View, CA 94043,
(415) 964-7400 (full systems and boards)

Data Speed, Inc., 1302 Noe St., San Francisco, CA
94131 (disk controller)

Digital Group, P.O. Box 6528, Denver, CO 80206,
(303) 777-7133 (cards and systems)

Digital Micro Systems, Box 1212, Orem, UT 84057,
(800) 453-1444 (cards)

Digital Research Corp., P.O. Box 401247, Garland, TX
75040, (214) 271-2461 (memory cards)

Dynabtye, 4020 Fabian, Palo Alto, CA 94303,
(415) 494-7817 (memory cards)

Electronic Control Technology, 763 Ramsey Avenue,
Hillside, NJ 07205, (201) 686-8080 (card cages and
boards)

Godbout Electronics, Box 2355 Oakland Airport, CA
94614, (415) 562-0636 (boards and parts)

D. C. Hayes Assoc., P.O. Box 9884, Atlanta, GA 30319,
(404) 231-0574

Imsai, 14860 Wicks Blvd., San Leandro, CA 94577,
(415) 483-2093 (full range of systems and cards)

Integrand, 8474 Ave. 296, Visalia, CA 93277,
(209) 733-9288 (mainframe)

International Data Systems, 400 North Washington St.,
Suite 200, Falls Church, VA 22046, (703) 536-7373
(boards)

Intersystems, 1650 Hanshaw Rd., P.O. Box 91, Ithaca,
NY 14850, (607) 257-0190 (full range of hardware)
(formerly Ithaca Audio)

Jade Computer Products, 5351 West 144 St., Lawndale,
CA 90260, (213) 679-3313 (memory and CPU
boards and parts)

Matrox Electronic Systems, 5800 Andover Rd., Mon-
treal Que. H4T1H4, (514) 481-6838 (display
boards)

MITS (full range of systems and cards-see Pertec
Computer Corp.)

MicroDesign, 679-I S. State College Blvd., Fullerton,
CA 92631, (714) 870-9860 (memory boards)

Micronics, Box 3514, 123 West 3rd St., Suite 8, Green-
ville, NC 27834, (919) 758-7757 (software trap
board)

Objective Design, P.O. Box 20325, Tallahassee, FL
32304, (904) 224-5545 (display card and cage)

Parasitic Engineering, Equinox Div., P.O. Box 6314,
Albany, CA 94706 (800) 648-5311 (cards and
mainframe)

Pertec Computer Corp., 20630 Nordhoff Street, Chats-
worth, CA 91311 (213) 998-1800

Prime Radix, P.O. Box 11245, Denver, CO 80211,
(303) 573-5942 (memory system)

Seals Electronics, 10728 Dutchtown Rd., Concord, TN
37922, (615) 966-8771 (memory boards, systems)

S. D. Sales, P.O. Box 28810-K, Dallas, TX 75228,
(214) 271-0022 (memory, CPU boards, and parts).
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S-100 Inc., 7 White Place, Clark, NJ 07066,
(201) 382-1318 (boards)

Space Byte, 1720 Pontius Ave., Suite 201, Los Angeles,
CA 90025, (213) 468-8080 (CPU boards)

Szerlip Enterprises, 1414 W. 259 St., Harbor City, CA
90710 (PROM program board)

Tarbell Electronics, 950 Dovlen Place, Suite B, Carson,
CA 90746, (213) 538-2254 (cassette and disk inter-
faces, and breadboard)

Technical Design Labs., see Xitan.
Validity Corp., 4901 Morena Blvd., San Diego, CA

92117, (714) 272-7703 (interface boards)
Vanderberg Data Products, P.O. Box 2507, Santa

Maria, CA 93454, (805) 937-7951 (memory boards)
Vector Graphic Inc., 31364 Via Colinas, Westlake Vil-

lage, CA 91361, (213) 991-2302 (mainframe, boards,
and disk system)

Wameco, 3107 Laneview Drive, San Jose, CA 95132
(boards)

Wasatch Semiconductor Products, 25 South 300 East,
Suite 215, Salt Lake City, UT 84111 (memory board)

Xitan Corp., 1057 Main Street, Hanson, MA 02341
(systems and support boards formerly known as
Technical Design Labs)

Xybek, P.O. Box 4925, Stanford, CA 94305,
(408) 296-8188 (programmer and memory cards)

Printers

Anadex, 9825 DeSoto Ave., Chatsworth, CA 91311,
(213) 998-8010

Axiom, 5932 San Fernando Rd., Glendale, CA 91202,
(213) 245-9244

Centronics Data Computer Corp., Hudson, NH 03051,
(603) 883-01 11

Comprint, 340 E. Middlefield Road, Mt. View, CA
94043, (415) 969-6161

Expandor Corp., 612 Beatty Rd., Dept. 10IA, Monroe-
ville, PA 15146, (412) 373-0300

MPI, Box 22161, Salt Lake City, UT 84122,
(801) 566-0201

Practical Automation, Trap Falls Rd., Shelton, CT
06484, (203) 929-5381

TeleSpeed Communications, P.O. Box 647, Syosset, NY
11791

Texas Instruments Digital Systems Div., P.O. Box 1444,
Houston, TX 77001, (713) 494-5115

CRT Terminals

CMC Marketing, 7231 Fondren Rd., Houston, TX
77036, (713) 774-9526

Computer Data Systems, 5460 Fairmont Dr., Wilming-
ton, DE 19808, (302) 738-0933

Lear Siegler, 714 N. Brookhurst St., Anaheim, CA
92803, (714) 774-1010

Microterm , P.O. Box 9387, St. Louis, MO 63117,
(314) 645-3856

Southwest Technical Products , 219 Rhapsody, San
Antonio, TX 78216, (512) 344-0241

Xitex, P.O. Box 20887 , Dallas, TX 75220, (214) 350-5291

Printing Terminals

Abacus Computer Systems, 6315 Eunice Ave., Los
Angeles, CA 90042, (213) 666-1711

Anderson-Jacobson, 521 Charcot Ave., San Jose, CA
95131, (408) 263-8530

Center for the Study of the Future, 4110 N.E. Alameda,
Portland, OR 97212

International Peripheral Systems, Inc., 1849 N. Helm,
Fresno, CA 93727, (209) 252-3635

Sharp and Associates, Box 26045, Lakewood, CO 80226
Terminal Systems, 11300 Hartland St., North Holly-

wood, CA 91605, (213) 769-6772
Texas Instruments Digital Systems Div., P.O. Box 1444,

Houston, TX 77001, (713) 494-5115

Breadboarding and Cabinets

A P Products, P.O. Box 110-4, Plainsville, OH 44077,
(216) 354-2101

Bishop Graphics, 5388 Sterling Ctr., Box 5007, Westlake
Village, CA 91359, (213) 991-2660

Continental Specialties, 44 Kendall Street, Box 1942,
New Haven, CT 06509, (203) 624-3103

E & L Instruments, 61 First St., Derby, CT 06418,
(203) 735-8774

Enclosure Dynamics, P. O. Box 6276, Bridgewater, NJ
08807, (201) 725-7982

Vector Electronic Products, 12460 Gladstone Ave.,
Sylmer, CA 91342, (213) 365-9661

Vero Electronics, 171 Bridge Rd., Hauppauge, NY 11787
(516) 234-0400

PROM Erasers

UltraViolet Products, 5100 Walnut Grove Ave., San
Gabriel, CA 91778, (213) 285-3123

Floppy Disk Drive and
Controller Manufacturers

Alpha Microsystems, 17875 Sky Park North, Irvine,
CA, (714) 957-1404

Century Data, Div. of Xerox, 2411 West La Lalma Ave.,
Anaheim, CA 92801, (714) 821-2541

Icom Microperipherals, 6741 Variel Ave., Canoga Park,
CA 91303, (213) 348-1391

MFE Corp., Keewaydin Drive, Salem, NH 03079,
(603) 893-1921
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Micromation, 524 Union St., San Francisco, CA 94133,
(415) 398-0289

Micropolis, 7959 Deering Ave., Canoga Park, CA 91304,
(213) 703-1121

MSD, Inc., 2765 S. Colorado Blvd., Denver, CO 80222,
(303) 758-7411

North Star Computers, 2465 Fourth St., Berkeley, CA
94710

Peripheral Vision, P.O. Box 6267, Denver, CO 80206,
(303) 777-4292

PerSci, 12210 Nebraska Ave., W. Los Angeles, CA
90025, (213) 820-3764

Pertec Computer Corp., 21111 Erwin St., Woodland
Hills, CA 91367, (213) 999-2020

Sykes Datatronics, 375 Orchard St., Rochester, NY
14606, (716) 458-8000

Vista Computer, 2807 Oregon Court, Torrance, CA
90503, (213) 370-3880

Wango, 5404 Jandy Rd., Los Angeles, CA 90066, (213)
390-8081

Supplementary Products

Tape drives

Meca, 7026 O.W.S. Road, Yucca Valley, CA 92284,
(714) 365-7686

Quantex Div., North Atlantic Industries, 200 Terminal
Drive, Plainview, NY 11803, (516) 681-8350

Triple-I, 4605 North Stiles, Oklahoma City, OK 73118,
(405) 521-9000

Tape controller

Ro-Che Systems, 7101 Mammoth Ave., Van Nuys, CA
91405

Paper-tape readers or punches

Addmaster Corp., 416 Junipero Serra Dr., San Gabriel,
CA 91776, (213) 285-1121

Heathkit, Benton Harbor, M149022, (616) 982-3434
Decitek, 250 Chandler St., Worcester, MA 01602,

(617) 798-8731
Oliver Advanced Engineering, Inc., 676 West Wilson

Ave., Glendale, CA 91203, (213) 240-0080

I10 remote control

Mountain Hardware, P.O. Box 1133, Ben Lomand, CA
95005, (408) 336-2455

Video modulator

ATV Research, 13-K Broadway, Dakota City, NE
68731, (402) 987-3771

Logic analyzer

Databyte, P.O. Box 14, 7433 Hubbard Ave., Middleton,
WI 53562, (608) 831-7666

Component and Surplus Dealers

Ace Electronic Parts, 5400 Mitchelldale B-8, Houston,
TX 77092, (713) 688-8114

Active Electronic Sales, P.O. Box 1035, Framingham,
MA 01701, (617) 879-0077

Adelco, 2281Q Babylon Turnpike, Merrick, NY 11566,
(516) 378-4555

Adva Electronics, Box 4181 ER, Woodside, CA 94062,
(415) 851-0455

Ancrona, P.O. Box 2208P, Culver City, CA 90230,
(213) 641-4064

B & F Electronics, 119 Foster Street, Peabody, MA
01960, (617) 532-2323

Bullet Electronics, P.O. Box 19442E, Dallas, TX 75219,
(214) 823-3240

California Industrial, P.O. Box 3097A, Torrance, CA
90503, (213) 772-0800

Delta Electronics, P.O. Box 2, 7 Oakland Street, Ames-
burg, MA 01913, (617) 388-4705

Digi-Key Corp., P.O. Box 677, Thief River Falls, MN
56701, (218) 681-6674

Digital Research Corp., P.O. Box 401247, Garland, TX
75040, (214) 271-2461

Etco Electronics, Dept. OV, 521 5th Avenue, New York,
NY 10017

Formula International, 12603 Crenshaw Blvd., Haw-
thorne, CA 90250, (213) 679-5162

F. Reichert Sales, 1110 E. Garvey Ave., W. Covina, CA
91790

Godbout Electronics, Box 2355, Oakland Airport, CA
94614, (415) 562-0636

Integrated Circuits Unlimited, 7889 Clairemont Mesa
Blvd., San Diego, CA 92111, (714) 278-4394

International Electronics Unlimited, Village Square,
P.O. Box 449, Carmel Valley, CA 93924
(408) 659-3171

Intersystems (Ithaca Audio), P.O. Box 91, Ithaca, NY
14850, (607) 257-0190

Jade Computer Products, 5351 W. 144th Street, Lawn-
dale, CA 90260, (213) 679-3313

JameCo Electronics, 1021-A Howard Ave., San Carlos,
CA 94070, (415) 592-8097

J. B. Saunders, 3050 Valmont Road, Boulder, CO 80301,
(303) 442-1212

Meshna Electronics, P.O. Box 62, East Lynn, MA 01904,
(617) 595-2275

New Tone Electronics, P.O. Box 1738R, Bloomfield,
NJ 07003, (201) 748-6171

Optoelectronics, Box 219, Hollywood, FL 33022,
(305) 921-2056

Poly Paks, P.O. Box 942R, Lynnfield, MA 01940,
(617) 245-3829

Quest Electronics, P.O. Box 4430 E., Santa Clara, CA
95054, (408) 988-1640
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Radio Hut, P .O. Box 38323 , Dallas, TX 75238, S. D. Sales, P.O. Box 28810 , Dallas, TX 75228,
(214) 271-8423 (214) 271-0022

Radio Shack , (check local city directories)
Ramsey Electronics , Box 4072B , Rochester , NY 14610, Solid State Sales, P.O. Box 74D , Somerville , MA 02143,

(716) 271-6487 (617) 547-4005
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Fig. C.16 Imsai 8080 SIO 2-2, dual series interface card (sheet 1 of 2)

199



200

p

C6 Leo

The S-100 Bus Handbook

Al l
A3 J OPTIONAL JUMPER SOCKET

Rl
R2

A5 R3 1K''/.W
A4B 75452 R13

A4A R14ll
A6AJ 4N25 R4
A66 R5

v
A10 7404 R6

220'/4W
All R12

A12
7493 R15

R16
131 R7
B4 75189 4.7'/.W

R171
B10 R8
B2 1 R9
B3 J 74188 R10
69 R11

65 ] 8251 R18
470'/.W

B6 J R19
B7A 4N25 R20
B78 75452 R21J

88 R22
OPTIONAL JUMPER SOCKET 56 %W

B11 R23
B12 7493

J C3 74LS02
C4

7408
C6
C5 7425

Cl PORT SELECT 1
C8 74LS30
C9 8T97
C10 74177

Cll 74LS08
C12 7493

D3 1 OPTIONAL JUMPER SOCKETD6 J
D4 l
D7 J 74LS04
D11
D5 74LS00

D8 74LS30

L9 -

i

D9 1
D10 8216

Cl l
thru 1 33 uF
C4
Ci t 11
thru I .1 uF
C24

EE

CR11
CR4
CR21
CR3

Q1
Q2

IN914

1N4742

2N3904

Fig. C.16 Imsai 8080 SIO 2-2, dual series interface card (sheet 2 of 2)



Schematic Diagrams of Commonly Used S-100 Bus Boards 201

44>

.^ Q

-5
O G

/0
A

B

R Z C

0

We

Zv v ^ {
1 3

©A5 /3 c 3Q z as

A6

A7>

74[30

Z

7

O

4

.707>-

DO/

DO5>-

Do4>-

D03>-

P02>-

2w >-

® Dl/

D12

D13f

D14 E-

^ DrsF-

{s^ Dr7E-

2

Z

A3

-0 44

3

P

4
13

3

K

C
A

M

N

Fig. C.17 Pertec/MITS 88-2SIO, dual series interface card (sheet 1 of 3)



202 The S-100 Bus Handbook

23

/0C,E /IY7rr

^/SY

zz
/CYJ It / wArr

3

A

IF

D 1

2

S
5

/&
/7

/8

/9

10
2/

22

T^vF
-/2/

.>O - ourPo/r (O.v 8'.450 Juiv,PE.E )

- /.VGUT (0. BO.oeo 3fIMPE.2.. )

-L0
/3

14
Y

J

K

M

N

C75

Mb
e,, eo

7X 7D
C50

55 D7

E DL

C5/ DS

C/W D4

E D3

C52 D2

"SO D/

,e48 DO

14

Z5

Z
4

5

T3SUF

DZ

D/

D3

DS

D4

-SV

< E2
- E/

'1 E3
->O ES
')O E4

C.^O
-0

CC/
-0

O VIm

o VI/

O VI2

O VI3

o V14

O V15

o VI4

o VI7

O PINT

//00-

094W

4B00G

/e0o O

IOO O

z44o 0
3000

/SO O

C9

C/O
I 5̂ GpF

/0nn 1- L228 p

I.457L
MN2

3cc.

I V4 3 I/Z
oD 3o r sz

34 70 Q

o °o ° °c
9 / 2 3 /O

,3J

4 E G
4, g3L34

42 B
o °i 0, 0, 0, 0s 0.

7 19 O N 2

Fig. C.17 Pertec/MITS 88-2SIO, dual series interface card (sheet 2 of 3)



Schematic Diagrams of Commonly Used S-100 Bus Boards 203

-O D2
(cry)

^7
3

/0

-0 D/ y

(DCD)

IsL

-O D3

(sec)

r M/<

_0 DS
(X-M/ r)

2N4 >

-0 D4

(2 r5) NZ p
5

,4%R.T 0

Po.eT'I

-p 52
(C r5)

/
7Z

44<

-0 E/
(De D)

J3

r2^

-Q E3
(.eec)

JI

M5

-Q E3 L3 >

(x -"r)

N6 O -t
/o

.e'7 Y/
0 0

I

4 S6
-0

0 O

/0 I3
--0

S -0

1 .e3

470 -

If:

V4

+ C5 2/3
-7 //"-- 470-

D3

DG

D9

0 ve

,e/4 Y9
/.s.C zza

.es
AVV%Ar2

20-

1

O YS

r
-/53

r/?V -/SV

O/

•

O Z2

Z6 e7
2.7^ 220.E

2.7

O
es, Y/0

O O

.C/ Y/6
0--

J2

5

NS
0

,e/(o
Z. 7 /-'

74189} I' J, K, L, M, N
^-53

co e26

470-r-

2/8
470

223
4 70

0 Z4

f 0-o

5 0-O

6o- I
70-01

8 0--C

9 o--O

/o o--^
L _ -

z20^ V7 06
iAA

D/5

D16

2/7
220.

I 2 O-O

143 3 M o4 M
1 3 0--0 I

4 0- C
IY// 50-0

52-/O 8 0-C

-r/5V -/sV ^O 9 O--0

220 -o
I2/9 Y/2 6 0

220 n 7 0-0

1 '00--0-+-

Y14 L J'

r/5V -/S3

F227

Q3

£30

V

32

Mirk /e/e
covre^6.vr

O Y/7 DR5 /977

0

Fig. C.17 Pertec/MITS 88-2SIO, dual serial interface card (sheet 3 of 3)



204 The S-100 Bus Handbook

d
N IO GF' Q,
O 1a O ' L

IL a

p0 Z-w UU, (a (A f Sp i

nMD rti ^C, r 0 00

_
0

N

>
&

O
Q

M ~ kp lp CD -CD O
m v mm0] mm m

-
U

N M
U U

f•
UU

U-

31 ; 3
It . 1,

Op O YOCP
j O /- O O

d1 ♦ Z * IIM/

3

O
O

]I 3

Y F N N =
* N N

cc

N N
' N♦ M f 10 IOM wIOt O a= ON d

U
uu
UU 0 U U mod' ^^ w a:= KR QLY

t0 h
1• N

0
M

N

W
4'

U

H HI,

U

U

p
K d'

U

>

+

H4
N

U

I-

I•-+HI1

U

- HI'

m N ♦ m _ O

o^oo^vob vr'v

>

In

0 1
w

IO M

M

10^

8

N

N

M

e

Lj

N N M h P

•I•
O

_1-

c

N 1 YlT 0

I>
N

0
O
0

N

I-
0

M

c0

Fig. C.18 Imsai 8080 UCRI, cassette interface card



Schematic Diagrams of Commonly Used S-100 Bus Boards

A3 0-

P20-

Alo--

-O

0
-o

0'

,O

C9 Fl

iN 1/7-12

L
LL=

m

-/5V -/2 3
30r^

Y6v 0

io

/2

/.,

I
2

S,
'1

0

7805 2 >S 3V&

io

/0

205

H

rn

12

ACR-1

Fig. C.19 Pertec/MITS 88-ACR, cassette interface card (sheet 1 of 5)



206 The S-100 Bus Handbook

A

B

C -i

E

z3

/S

c

z

0

uc

pys ISO "r 4 ,/D
0 0 0

4 L

zs0

3 7

DA

ZN

H

L

M•COM 2502 UART

A,B,C,D,G - 74L00
J,S - 74L02

H,E - 74L04

I -74L30

K,L,N,U - 74367
P,Q,R-74193

0-9601

1 )l DS 7

DZ6

DI>r

Fig. C.19 Pertec/MITS 88-ACR, cassette interface card (sheet 2 of 5)



Schematic Diagrams of Commonly Used S-100 Bus Boards 207

01 N ^m

^^ N Q

M 0

0

s

Q

O
a

J

k

O

♦`

11

Fig. C.19 Pertec/MITS 88-ACR, cassette interface card (sheet 3 of 5)



208

P/R
F8K
PLAY INPUT C4

V 1I 47 of

RIT
47K

R 24

Z.2 K

A

B

C

C51r

500yF
25V

Vcc (+5 V)

POWER CONNECTIONS

IC TYPE Vec, OND -12V

A 741 7 4

B 741 7 4

C XR 210 18 7

E 7493 5 10

0 7402 14 7

H 7420 14 7

J 9316 16 8

K 9316 16 8

Ac

K

R12
1.5K

-12V

2
4 H

10

2

a

13 12

The S-100 Bus Handbook

D3
1N914

DOL

Rc

Cir
Di

9

Yea

Ep Bo Co

Et

CkAi

J

So Ci

3 4

15

I

A

ACR-3

- B

C7

02

03

EN 2907

(1 MHz)

12

Bin
Ao On Co Do

E

14 Ain Ro+ Ron

Mee

TP

C13
35FF

CIO

IpF

CI11+

,PIT

VCcI

9 8 II

Rc
Clr

DoCl

r
1 Voo

6

R20
2.2 K

0

F
G
H

Fig. C.19 Pertec/MITS 88-ACR, cassette interface card (sheet 4 of 5)



Schematic Diagrams of Commonly Used S-100 Bus Boards

5

R25

4.7 K

R27
10 K

- 12 V

R 26

3.3K

C14:
.16rF

I6

a

.C.

14 13 12 11

3.3 K

2

C50 _J_+ R29
6 N F -T 60011

R33 R34

4.7K 10K

C16 CI C17 cis
.033)LF .033p .033pF 1 y

T T
R30
100 OHMS UL)

+0
5V.PLL T 2500/0

FREO ^
- 12 V

RE4N /C

0

Vcc

6RS PLAY SERIAL DATA

Ka
RECORD SERIAL DATA

209

Fig. C.19 Pertec/MITS 88-ACR, cassette interface card (sheet 5 of 5)



210

a

Q

a

a

<M 2P

The S-100 Bus Handbook

0

0
0

0

Cz

CB

LLJ

C
D

M

a

a
R
S

T

T
U

V

Fig. C.20 Imsai 8080 PIO, quad parallel 8-bit port card (sheet 1 of 2)



Schematic Diagrams of Commonly Used S-100 Bus Boards 211

M)

2 i--1

M J

N

0 -

P

S

T

V

0
0
H
0
H
0

At

as

A4

Al thru

'

A8 8212

i'7
81j 7-S C '+

B8
810

R9 JUMPER SOCKET

B11 7427

C2 JUMPER SOCKET

C61
W1 71Lm30
88 JUMPER SOCKET

C10 7 44 L, ,,')'Z
C11 7402

C1 mw C6
C9 C13

ImF

Cl
C6

33mF

L10 th,. L17
L20 lhru 127

L30 thru 137 LED'S
L40 11ru L47 J

R1

R2

R11

R20

829

R38 thw R73

R3 th,. R10
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Fig. C.20 Imsai 8080 PTO, quad parallel 8-bit port card (sheet 2 of 2)
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Fig. C.21 Pertec/MITS 88-4PIO, quad parallel 8-bit port card (sheet 1 of 2)
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Fig. C.21 Pertec/MITS 88-4PIO, quad parallel 8-bit port card (sheet 2 of 2)
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Fig. C.22 Imsai 8080 MIO, multiple parallel and serial I/O card (sheet 1 of 3)
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REV. 2 11/76

Fig. C.22 Imsai 8080 MIO, multiple parallel and serial I/O card (sheet 2 of 3)
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MIO MODIFICATIONS

AUDIO OUTPUT MODS

JI

CLOCK
FROM 13
U45
PIN 2

BUS RECEIVER ENABLE MOD

6 INPUT ENABLE
TO U4I
PIN I
AND U42
PIN I

CARD SELECT
FROM U45
PIN 4

C^-,
TO U47

► PINS
7 AND 10

NOTE:
THESE TWO GATES HAVE
SWAPPED FUNCTIONS

* ADDED COMPONENT

tALTERED VALUE OR TYPE
IN EXISTING LOCATION

AUDIO INPUT MODS

C6
0.33pFt

AUDIO R27
IN 10011

I N 4372

' IN4372*

R29
47011

+ 5 V

R44
10 kll

R26 ^ ^ 6.2
II k11 IRk 5 kA*

C20 _L R30t
0.1 ,uF IN914

33011

Fig. C.22 Imsai 8080 MIO, multiple parallel and serial I/O card (sheet 3 of 3)
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Fig. C.23 Xitan/TDL SMB, combination I/O and boot strap memory card (sheet 1 of 3)
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The S-100 Bus Handbook
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Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 1 of 8)
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R16J
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C1
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Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 2 of 8)
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DD
EE

Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 3 of 8)
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Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 4 of 8)
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SW

P11 0-^o
AC INPUT NO---------o 0

AUX SW
Dumper for 110 volt operation)

GND 0

0-BLACK RED 12.6 VAC

CUT WHITE

BLACK

AC CONTINUATION
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T2
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P1 N GND

Q Q 0

V
AC CHASSIS GND.

R3

A2
with Heat Sink

J4

I

J4

A

Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 5 of 8)
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+5V

J3

A

0

J1 - ALL EVEN NUMBERED PINS GROUNDED
J2 - PINS 1 ,3,5,7,26 GROUNDED
J3 - PINS 1 ,3,5,7,26 GROUNDED

>TRACK 43

m

WRITE ENABLE

WRT. ENABLED

TRACK 00

WRITE DATA

J1

2

11
13

I Iv

I

^? ^ o i^E CO„ rw.^c«.EA V

oxl 'Ex's

REV. 3 12/76
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Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 6 of 8)
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J2 < 45
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H
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•" ID

30 2D

c,

10

9

0

11

13

12

13

14

10

5

1

49

v

12 3

T5

/E15

/E14

7E13 3

/AE13

/AE15

Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 7 of 8)
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Fig. C.24 Imsai 8080 IFM, disk controller card set (sheet 8 of 8)
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Fig. C.25 Pertec/MITS 88-DDC, disk controller card set (sheet 1 of 12)
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p
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The S-100 Bus Handbook

I WHEN TISK ENABLED

d

5

U WHEN
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1c E4
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ON REV 1 BOARD ONLY

Fig. C.25 Pertec /MITS 88-DDC, disk controller card set (sheet 3 of 12)
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Fig. C.26 Pertec/MITS 88-070, Qume printer controller card
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APPENDIX D

Proposed 5-100 Bus Standard

Before going into the actual details for the proposed
S-100 bus specification ,* I would just like to state that
the committee chairmen of IEEE task no. P696 are still
interested in suggestions and criticisms of the proposed
standard. If you wish to contact them, you may write or
call Mr. George Morrow, c/ o Thinker Toys, 5221 Central
Avenue, Richmond, CA 94804 (415) 524-2101, or How-
ard Fullmer , c/ o Parasitic Engineering, 1201 10th Street,
Berkeley, CA 94710 (415) 527-6133.

For the purposes of brevity, just the simplest descrip-
tion of the proposed standard is included here. A full copy
of the standard was published in the July 1979 issue of
IEEE Computer magazine . Copies of this issue can be
ordered from the IEEE for a single copy price of $3 to
IEEE members or $6 to nonmembers . For a single
copy, send payment to Editor , Computer Magazine,
5855 Naples Plaza, Suite 301, Long Beach, CA 90803.
Additionally , the fully revised standard is available
as part of a book published by the IEEE Computer
Society in the fall of 1979. This book, Microprocessors
and Microcomputers, is available at a cost of $9 to IEEE
members and $12 to nonmembers.

Although the S-100 bus has now been in use for
almost half a dozen years, there has not been one agreed-
upon specification that all manufacturers can point to
and say that their board meets all requirements. This
is changing , though . Just before this book went to press,
the Institute of Electrical and Electronic Engineers
(IEEE) published what is called the "standard specifi-
cation for S-100 bus interface devices." This "standard"
is a result of IEEE task 696.1 / D2 and is almost a two-
year culmination of effort to eliminate many of the
bus's problems and upgrade it for use with 16-bit
microprocessors.

Basically , the changes to the bus include the follow-
ing upgrades-the extension of the address bus from 16
to 24 bits , ganging of the 8 -bit data-in and data-out buses
into a 16 -bit bidirectional bus, and the addition of two

*Based on "Standard Specification for S-100 Bus Interface Devices,"
IEEE Task 696.1 / D2, K. A. Elmquist, Howard Fullmer, D. B. Gustav-

son, and George Morrow . Computer, July 1979, Vol. 12, No. 7, pp.

28-51. Copyright © 1979 by the Institute of Electrical and Electronics
Engineers, Inc.

handshaking lines to permit intermixing of 8- and 16-bit
memory cards . Also added is a binary-encoded multiple-
master arbitration bus that permits up to 16 master
CPUs on the bus. The necessary logic to do the arbitra-
tion can be built in one IC, so the overhead for the mul-
tiple CPU configuration is minimal. Additional ground
lines, a power fail line, and an error line have also been
added.

Three other lines, termed NDEF (not to be defined),
have been allotted for manufacturers and users to create
their own special control signals, if needed . Five addi-
tional lines are reserved for future use (called RFU lines),
and some lines formerly used for front -panel purposes
have been deleted, with the intention that such lines can
best be handled by a jumper cable from the CPU card
to the front panel. Also implemented will be a DMA
(direct memory access) protocol that provides overlap
of the control lines at the beginning and end of the transi-
tion between permanent and temporary masters. This
allows address, data , and control buses to settle before
information is transferred.

The proposed standard applies to microprocessor
interface systems that use the 100-line parallel backplane
commonly known as the S-100 bus. Within the system,

• Digital data are exchanged among interconnected
devices.

• The total number of interconnected devices is small
(22 or fewer).

• The total transmission path length is electrically
short (25 in. or less); that is, the transmission line
propagation delays are not important.

• The maximum data rate of any signal on the bus is
low (less than or equal to 6 MHz).

Thus, the bus provides a means of communication be-
tween two basic functional elements that organize and
manage the flow of information among devices-a de-
vice operating as a bus master and a device acting as a
bus slave . A bus master has the capability to generate
all interface messages necessary to cause a bus cycle
and then transfer device-dependent messages to or from
the addressed slave as part of that bus cycle. The master

249
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can also address all slave devices or some portion of
them. Bus slaves monitor all bus cycles and can thus be
addressed by a master and then transfer device-dependent
messages to or from the master. Master and slave capa-
bility occur both individually and collectively in devices
that are interconnected to the bus.

The S-100 interface system consists of a set of sig-
nal lines used to carry all information, interface mes-
sages, and device-dependent messages among intercon-
nected devices.

The bus structure is organized into eight sets of signal
lines:

1. Data bus-16 signal lines
2. Address bus-16 or 24 signal lines
3. Status bus-8 signal lines
4. Control output bus-5 signal lines
5. Control input bus-6 signal lines
6. DMA control bus-8 signal lines
7. Vectored interrupt bus-8 signal lines
8. Utility bus-20 signal lines

Functional devices interconnected via the interface
system are divided into two broad classifications, bus
masters and bus slaves, according to their relationship
to the generation and reception of interface messages.
Devices acting as bus masters are responsible for the
initiation of all bus cycles and for the generation of all
signals necessary for the conduction of an unambiguous
bus cycle. These signals are termed type M signals and
consist of the address, status, and control buses. Device-
dependent messages are transmitted and received on the
data bus.

Bus masters are subdivided into two classifications-
permanent masters and temporary masters. A permanent
bus master (generally a CPU) is the highest priority
master in the interface system. A temporary master may
request the bus from the permanent master for an arbi-
trary number of bus cycles and then returns control of
the bus to the permanent master. The transfer of bus con-
trol from a permanent master to a temporary master and
back to the permanent master is termed a DMA cycle.

The difference between a permanent bus master and
a temporary bus master is that:

1. Only one permanent master may exist within the
interface system, whereas up to 16 temporary mas-
ters may coexist in a single system.

2. A temporary master is not subject to a DMA cycle;
that is, there are no nested DMA operations.

Devices acting as bus slaves are bus cycle receptors.
A bus slave monitors all bus cycles and, if addressed
during a particular bus cycle, accepts or sends the re-
quested device-dependent message on the data lines.
While bus masters must generate a specific set of signals
in order to assure an unambiguous bus cycle, a bus
slave need only examine and generate that subset of bus
signals necessary to communicate with bus masters.

The address bus consists of 16 or 24 bit-parallel
signal lines used to select a specific location in memory
or a specific input/ output device for communications
during the current bus cycle. All bus masters must assert
at least 16 address bits but may assert 24 address bits if
extended address capability is desired.

The standard memory address bus consists of 16 lines
specifying 1 of 64k memory locations. These 16 lines are

named AO through A 15, where A 15 is the most significant
bit. The extended memory address bus consists of 24 lines
specifying 1 of 16 million memory locations. These 24
lines are named AO through A23, where A23 is the most
significant bit.

The standard I/O device address bus consists of
lines, AO through A7, specifying 1 of 256 I/O devices,
with A7 used as the most significant bit. Note that, how-
ever, the 1/0 device address has traditionally been dupli-
cated onto the high order address byte A15-A8. While
this is considered acceptable procedure, it is not recom-
mended for new designs as it complicates expansion to
extended 1/0 device addressing. The extended 1/0 device
address bus consists of 16 lines, AO through A15, spe-
cifying 1 of 64k devices. A15 is the most significant bit.

The status bus consists of eight lines that identify
the nature of the bus cycle in progress and qualify the
nature of the address on the address bus. The mnemonics
for status lines always begin with a lowercase s and con-
sist of:

1. Memory read-sMEMR
2. Op-code fetch-sM1
3. Input-sINP
4. Output-sOUT
5. Write cycle-sWO*
6. Interrupt acknowledge-sINTA
7. Halt acknowledge-sHLTA
8. Sixteen-bit data transfer request-sXTRQ*

All eight status signals must be generated by the current
bus master.

One relevant status signal is not directly available
on the bus but may be created by the combination of two
others. Status Memory Write is defined as:

sMemory Write = (-sOUT) • sWO (logic equation)

that is, status memory write is true when sOUT is false
and sWO (write) is true. Data input and data output
are always specified relative to the current bus master.
Data transmitted by the current bus master to a bus
slave is called data output. Data received by the current
bus master from a bus slave is called data input.

The data bus consists of 16 lines grouped as two
unidirectional 8-bit buses for byte operations and as a
single bidirectional bus for 16-bit word operations. Two
unidirectional 8-bit buses are used for byte data trans-
fers. Data output appears on the data output bus
(DOO-D07), where DO7 is the most significant bit.
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Data input appears on the data input bus (DI0-DI7),
where D17 is the most significant bit.

For 16-bit data transfers the DI and DO buses are
ganged together, creating a single 16-bit bidirectional
bus. Two signal lines control the ganging of the data
buses, sixteen request (sXTRQ*) and sixteen acknowl-
edge (SIXTN*). When both of these lines are true (in
the low state), the data buses are ganged with DOO cor-
responding to DATA 0 and D17 corresponding to
DATA 15, the most significant bit.

The five lines of the control output bus determine
the timing and movement of data during any bus cycle.
The mnemonics for the control output lines always be-
gin with a lowercase p. The five lines are:

1. pSYNC, which indicates the start of a new bus cycle.
2. pSTVAL*, which in conjunction with pSYNC indi-

cates that stable address and status may be sampled
from the bus in the current cycle.

3. pDBIN, a generalized read strobe that gates data
from an addressed slave onto the data bus.

4. pWR*, a generalized write strobe that writes data
from the data bus into an addressed slave.

5. pHLDA, the hold acknowledge signal that indicates
to the highest priority temporary master that the per-
manent master is relinquishing control of the bus.

The six lines of the control input bus allow bus
slaves to synchronize the operations of bus masters with
conditions internal to the bus slave (e.g., data not ready)
and to request operations of the permanent master (e.g.,
interrupt or hold). The six control input lines are:

1. RDY
2. XRDY
3. INT*
4. NMI*
5. HOLD*
6. SIXTN*

The ready lines are used by bus slaves to synchronize
bus masters to the response speed of the slave. Thus
cycles are suspended and wait states inserted until both
ready lines are asserted. The RDY line is the general
ready line for bus slaves. It is specified as an open col-
lector line. The XRDY line is a special ready line com-
monly used by front-panel devices to stop and single step
bus masters. It is not specified as an open collector line
and should not be used by other bus slaves, since a bus
conflict may exist.

The two interrupt lines, INT* and NMI*, are used to
request service from the permanent bus master. The INT*
line may be masked off by the bus master, usually via an
internal software operation. If the master accepts the
interrupt request on the INT* line, it may respond with
an interrupt acknowledge bus cycle, accepting vectoring
information from the data bus. The INT* line is often
implemented as a "group interrupt" line in conjunction

with the vectored interrupt bus. In this case, INT* indi-
cates the presence of one or more vectored interrupt
requests.

The NMI* line is a nonmaskable interrupt request
line; that is, it may not be masked off by the bus master.
Accepting an interrupt on the NMI* line need not gen-
erate an interrupt acknowledge bus cycle. An interrupt
request on the INT* line is asserted as a level; that is,
the line is asserted until interrupt service is received.
An interrupt request on the NMI* line, on the other
hand, is asserted as a negative going edge, since no inter-
rupt acknowledge cycle need be generated. Both lines
are specified as open collector lines.

The hold request line, HOLD*, is used by tempo-
rary bus masters to request control of the bus from the
permanent bus master. The HOLD* line may be masked
by the permanent bus master to prevent temporary mas-
ters from gaining bus control. The HOLD* line is speci-
fied as an open collector line and may only be asserted
at certain times.

The sixteen acknowledge line, SIXTN*, is a response
to the status signal request (sXTRQ*) and indicates that
the requested 16-bit data transfer is possible. The
SIXTN* line is specified as an open collector line.

The eight lines of the DMA control bus are used in
conjunction with control bus signals HOLD* and
pHLDA. They arbitrate among simultaneous requests
for control of the bus by temporary masters and disable
the signal drivers of the permanent bus master, thus
effecting an orderly transfer of bus control. All eight
lines of the DMA control bus are specified as open
collector lines, and these control lines are:

1. DMAO*
2. DMA1*
3. DMA2*
4. DMA3*
5. ADSB
6. DODSB*
7. SDSB*
8. CDSB*

The four lines that arbitrate among simultaneous
requests for bus control by temporary masters are
DMAO* through DMA3*. The encoded priority of re-
questers is asserted on these lines and, after settling,
they contain the priority number of the highest priority
requester.

Four signals are available on the bus to disable the
line drivers of the permanent bus master. They are:

1. ADSB*, address disable
2. DODSB*, data out disable
3. SDSB*, status disable
4. CDSB*, control output disable

Use of these lines is tightly specified during the trans-
fer of the bus from a permanent master to a temporary
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master, and any transfer involving the control output
lines should follow a similar protocol. The address,
data, and status signals from the permanent master may
be disabled and replaced using these signals as long as
the contents of these buses are valid for the current bus
cycle as though no replacement had occurred.

The eight lines of the vectored interrupt bus are
used in conjunction with the generalized vectored inter-
rupt request, INT*, to arbitrate among eight levels of
interrupt request priorities. They are typically imple-
mented as inputs to a bus slave that masks and gives
priority to the requests, asserts the generalized interrupt
request to the permanent bus master, and responds to the
interrupt acknowledge bus cycle with appropriate vector-
ing data. The eight lines of the vectored interrupt bus are
VIO* through V17, where VIO* is considered the highest
priority interrupt. The vectored interrupt lines should
be implemented as levels; that is, they should be held
active until service is received.

Power in S-100 systems is distributed to bus devices
as unregulated voltages. A total of nine bus lines are
used:

1. +8 Volts, 2 lines
2. +16 Volts, 1 line
3. -16 Volts, 1 line
4. GROUND, 5 lines

Ground lines are distributed across the edge connector
such that low impedance grounds are available on both
sides of the edge connector and on both sides of the
circuit cards.

The system clock, 0, is generated by the permanent
master. The control timing for all bus cycles, whether
they are cycles of the permanent master or cycles of
temporary masters in control of the bus, must be de-
rived from this clock. This signal is never transferred
during a bus exchange operation.

Another line, called CLOCK, is specified as a 2-MHz
(0.5 percent tolerance) signal with no relationship to
any other bus signal. It is to be used by counters, timers,
baud-rate generators, etc.

System reset functions are divided into three lines:

1. RESET*, resets all bus masters.
2. SLAVE CLR*, resets all bus slaves.
3. POC* , power-on clear is active only on power-on,

asserts SLAVE CLR* and RESET*, and is specified
as having a minimum active period of 10 ms.

RESET* and SLAVE CLR* are specified as open-
collector lines.

The memory write strobe , MWRT, must be gen-
erated somewhere in the system . It is usually generated
by front-panel type devices but is optionally generated
by permanent masters or motherboards in systems with-
out front panels. Care must be taken that it is generated
at only one point in a given system . Memory write is
defined as:

MWRT = pWR • -sOUT ( logic equation)

Another line, PHANTOM*, is provided for over-
laying bus slaves at a common address location. When
this line is activated, phantom bus slaves are enabled
and normal bus slaves are disabled. This line is speci-
fied as an open-collector line.

The line ERROR* is a generalized error line that is
asserted when an error of some sort (i.e., parity, write
to protected memory) occurs in the current bus cycle.
This line is specified as an open-collector line.

Three lines that can be specified by individual manu-
facturers are provided on the bus. These lines, termed
NDEF (not to be defined), should only be implemented
as options and shall be provided with jumpers so that
possible conflicts may be eliminated. Any manufacturer
must specify in detail any use of these lines. Signals
on these lines are limited to 5-V logic levels.

The power fail line (PWRFAIL*) indicates impend-
ing power failure and remains true until power is re-
stored and POC* is true. The five remaining lines of
the bus are reserved for future use and may not be used
for any purpose.
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S-100 Bus Pin List

Pin No. Signal and Type
Active
Level Description

1 +8 VOLTS (B) Instantaneous minimum greater than 7 volts , instantaneous maximum less than 25 volts,

2 +16 VOLTS (B)
average maximum less than 11 volts.

Instantaneous minimum greater than 14.5 volts , instantaneous maximum less than 35

3 XRDY (S) H
volts, average maximum less than 21 .5 volts.

One of two ready inputs to the current bus master. The bus is ready when both these

4 VIO*(S) L O.C.
ready inputs are true. See pin 72.

Vectored interrupt line 0.
5 VI1*(S) L O.C. Vectored interrupt line 1.
6 V12*(S) L O.C. Vectored interrupt line 2.
7 V13*(S) L O.C. Vectored interrupt line 3.
8 V14*(S) L O.C. Vectored interrupt line 4.
9 V15*(S) L O.C. Vectored interrupt line 5.

10 V16*(S) L O.C. Vectored interrupt line 6.
11 V17*(S) L O.C. Vectored interrupt line 7.
12 NMI*(S) L O.C. Nonmaskable interrupt.
13 PWRFAIL*(B) L Power fail bus signal.
14 DMA3* (M) L O.C. Temporary master priority bit 3.
15 A18 (M) H Extended address bit 18.
16 A16 (M) H Extended address bit 16.
17 A17 (M) H Extended address bit 17.
18 SDSB* (M) L O.C. The control signal to disable the 8 status signals.
19 CDSB* (M) L O.C. The control signal to disable the 5 control output signals.
20 GND (B) Common with pin 100.
21 NDEF Not to be defined . Manufacturer must specify any use in detail.
22 ADSB* (M) L O.C. The control signal to disable the 16 address signals.
23 DODSB* (M) L O.C. The control signal to disable the 8 data output signals.
24 0 (B) H The master timing signal for the bus.
25 pSTVAL*(M) L Status valid strobe.
26 pHLDA (M) H A control signal used in conjunction with HOLD * to coordinate bus master transfer

27 RFU
operations.

Reserved for future use.
28 RFU Reserved for future use.
29 AS (M) H Address bit 5.

30 A4 (M) H Address bit 4.

31 A3 (M) H Address bit 3.

32 A15 (M) H Address bit 15 ( most significant for non-extended addressing.)

33 A12 (M) H Address bit 12.
34 A9 (M) H Address bit 9.

35 001 (M)/DATA1 (M/S) H Data out bit 1 , bidirectional data bit 1.
36 DO0 (M)/DATAO (M/S) H Data out bit 0, bidirectional data bit 0.

37 A10 (M) H Address bit 10.

38 D04 (M)/DATA4 (M/S) H Data out bit 4, bidirectional data bit 4.
39 005 (M)/DATAS (M/S) H Data out bit 5, bidirectional data bit 5.
40 D06 (Ml/DATA6 (M/S) H Data out bit 6, bidirectional data bit 6.
41 D12 (S)/DATA10 (M/S) H Data in bit 2, bidirectional data bit 10.
42 D13 (S)/DATA11 (M/S) H Data in bit 3, bidirectional data bit 11.
43 D17 (S)/DATA15 (M/S) H Data in bit 7 , bidirectional data bit 15.
44 sM1 (M) H The status signal which indicates that the current cycle is an op-code fetch.
45 sOUT (M) H The status signal identifying the data transfer bus cycle to an output device.
46 sINP (M) H The status signal identifying the data transfer bus cycle from an input device.
47 sMEMR (M) H The status signal identifying bus cycles which transfer data from memory to a bus mas-

48 sHLTA (M) H
ter, which are not interrupt acknowledge instruction fetch cycle(s).

The status signal which acknowledges that a HLT instruction has been executed.
49 CLOCK(B) 2 MHz (0.5%) 40-60% duty cycle. Not required to be synchronous with any other bus

50 GND (B)
signal.

Common with pin 100.
51 +8 VOLTS (B) Common with pin 1.
52 -16 VOLTS (B) Instantaneous maximum less than -14.5 volts, instantaneous minimum greater than

53 GND (B)
-35 volts, average minimum greater than -21.5 volts.

Common with pin 100.
54 SLAVE CLR* (B) L O.C. A reset signal to reset bus slaves. Must be active with POC* and may also be generated

by external means.
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S-100 Bus Pin List (cont'd)

Pin No. Signal and Type

55 DMAO* (M)
56 DMA1 * (M)
57 DMA2* (M)
58 sXTRQ* (M)
59 A19 (M)
60 SIXTN* (S)
61 A20 (M)
62 A21 (M)
63 A22 (M)
64 A23 (M)
65 NDEF
66 NDEF
67 PHANTOM* (M/S)

68 MWRT (B)
69 RFU
70 GND (B)
71 RFU
72 ROY (S)
73 INT* (S)
74 HOLD* (M)

75 RESET*(B)

76 pSYNC (M)
77 pWR* (M)
78 pDBIN (M)

79 AO (M)

80 Al (M)

81 A2 (M)

82 A6 (M)

83 A7 (M)

84 A8 (M)

85 A13 (M)

86 A14 (M)

87 All (M)

88 D02 (M1/DATA2 (M/S)
89 003 (M)/DATA3 (M/S)
90 D07 (M)/DATA7 (M/S)
91 D14 (S)/DATA12 (M/S)
92 D15 (S)/DATA13 (M/S)
93 D16 (S)/DATA14 (M/S)
94 Dill (S)/DATA9 (M/S)
95 DIO (S)/DATA8 (M/S)
96 sINTA (M)

97 sW0* (M)
98 ERROR* (S)
99 POC* (B)

100 GND (B)

The S-100 Bus Handbook

Active
Level Description

L O.C. Temporary master priority bit 0.
L O.C. Temporary master priority bit 1.
L O.C. Temporary master priority bit 2.
L The status signal which requests 16-bit slaves to assert SIXTN*.

H Extended address bit 19.
L O.C. The signal generated by 16-bit slaves in response to the 16-bit request signal sXTRQ*.
H Extended address bit 20.
H Extended address bit 21.
H Extended address bit 22.
H Extended address bit 23.

Not to be defined signal.
Not to be defined signal.

L O.C. A bus signal which disables normal slave devices and enables phantom slaves -primarily

used for bootstrapping systems without hardware front panels.
H pWR•-sOUT (logic equation). This signal must follow pWR* by not more than 30 ns.

Reserved for future use.
Common with pin 100.
Reserved for future use.

H O.C. See comments for pin 3.
L O.C. The primary interrupt request bus signal.
L O.C. The control signal used in conjunction with pHLDA to coordinate bus master transfer

operations.
L O.C. The reset signal to reset bus master devices. This signal must be active with POC* and

may also be generated by external means.
H The control signal identifying BSI.
L The control signal signifying the presence of valid data on DO bus or data bus.
H The control signal that requests data on the DI bus or data bus from the currently ad-

dressed slave.
H Address bit 0 (least significant).
H Address bit 1.
H Address bit 2.
H Address bit 6.
H Address bit 7.
H Address bit 8.
H Address bit 13.
H Address bit 14.
H Address bit 11.
H Data out bit 2, bidirectional data bit 2.
H Data out bit 3, bidirectional data bit 3.
H Data out bit 7, bidirectional data bit 7.
H Data in bit 4 and bidirectional data bit 12.
H Data in bit 5 and bidirectional data bit 13.
H Data in bit 6 and bidirectional data bit 14.
H Data in bit 1 and bidirectional data bit 9.
H Data in bit 0 ( least significant for 8 -bit data and bidirectional data bit 8.
H The status signal identifying the bus input cycle(s) that may follow an accepted interrupt

request presented on INT*.
L The status signal identifying a bus cycle which transfers data from a bus master to a slave.
L O.C. The bus status signal signifying an error condition during present bus cycle.
L The power-on clear signal for all bus devices ; when this signal goes low, it must stay low

for at least 10 ms.

System ground.
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Abacus, 1 Capacitance, 18 Control (continued)

Accumulator, 93 Capacitors, 18 parallel I/O, 65-66
ADD DSB line, 36 Capacity, disk storage, 86 Phi Deck, 79

Address, memory, 41 Card Controllers, disk, 87-88
Addressing analog I/O, 122 Conversion

direct memory, 94 CPU, 38-39 ASCII to binary or hex, 104-105
immediate, 94 Kansas City interface, 79-82 of numbers, 12-13
register-pair, 94 MIO, 69 program, 110
stack-pointer, 94 parallel 1/0, 64-68 Converters

Algebra, Boolean , 11, 14, 15 process-control, 122 analog to digital, 122

Altair 8800, 6, 33 PROM, 52 digital to analog, 122
Amplifier, sample/hold, 122 serial 1 /0, 56-64 Counter, 28
AND, 14 Cards, memory, 43 Current, 17
Applications Carry bit, 95 Cycle

88-AD/DA board, 126 Cell, memory, 40 instruction, 9

88-PCI board, 135 Chain reaction, overload, 139 machine, 9
programming, 122 Characters, command, 117

Architecture Circuit, contact protection, 131
computer, 5 Circuits Data, biphase, 74

microprocessor, 7 CMOS, 23 Data channel, cassette, 81

Arrays, storage, 31 ECL, 23 Data lines, 36

ASCII, 54, 105 NMOS, 23 Data transfer, disk, 88

Assembler TTL, 23 Debugging, program, 144

program, 107 Clock lines, 36 Deck, tape, 73, 78

two pass, 107 Clocks, 8, 9, 26 Decoder, BCD, 24

Assembly, hand, 108 COBOL, 119 Definition, typical system, 139

Asynchronous, 54 Code, object, 95 DeMorgan's Laws, 16

Auxiliary carry bit, 95 Collector, 21 Devices
Commands active, 18

BASIC, 120 1/0, 54
Babbage, Charles, 2 transfer of control, 93 Diagnostics

Bank , memory, 41 Comments, program, 147 disk memory, 140

Base, 21 Compatibility, disk recording, 87 memory software, 140-143

BASIC, 119 Components, electronic, 17 DIG 1 line, 37
Extended Disk, 119 Computer Diode, 19

Bit, 7 analog, 4 light-emitting, 20

Bits, condition, 95 central processor, 5 zener, 20
Board, combination memory, 45 digital, 4 Directory, disk file, 121
Bootstrap first, 2 Disks, floppy, 86

cassette, 77-78 Conditions, error, serial, 55 Displays, seven-segment, 24-25
disk, 87 Conductors, 17 DO DSBL line, 36

Bootstrap loading, 45 Configuration, system, 144 Drives, floppy disk, 86
Breakpoints, software, 147 Connection, daisy chain, 88

Bus, S-100, 6, 33 Connectors, 33

computer, 5 Control channel, cassette, 81 Editor, text, 107

data, 8 Control Electricity, 17

three-state, 8 joystick, 126-127 Elements, logic, 17

Byte, 7 large load, 127-138 Emitter, 21

255
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ENIAC, 2 Interface Most significant digit, 11
Equations, logic, 14 cassette, 70, 74 Motherboard, 33
Equipment, test, 144 Kansas City, 72, 79, 80 MRWT line, 37
Error, syntax, 147 parallel, 54 Multiplexer, analog signal, 122

Errors, programming, 144 Phi Deck, 79
Example, 88-PCI programming, 135 printer, 89
Execution, program, 93 RS-232-C, 55 NAND, 15

Nibble 40EXT CLR line, 36 serial, 54 ,
NOR 15Tarbell, 72-78 ,
NOT 14Interfaces ,
Numbersinput/output 54

Families, logic, 31
,

arabic 1real world 122 ,
Features

,
binary 12Interference ,

assembler, 107 decimal 11electromagnetic 131
,

BASIC, 119
,

hexadecimal 12radio-frequency 131
,

Field ,
octal 12Interrupts cassette 82

,
comment, 108

, ,
Numerals Roman II/O , ,

name 108,
isolated 56

operand 108
,

,
operation, 108

memory-mapped, 56 Ohms Law, 17

Fields instruction 102
Isolation, electrical, 131-132 Operating life, relay, 130, ,

Flip flop
Isolators, optical, 129 Operating system, disk, 87-88

clocked R-S, 26 Operation

D, 26 88-ACR, 82

27J-K 88-AD/DA board, 124-126,
master-slave 27

Language CPU, 38,
R-S 25

BASIC, 91 fetch, 41,
T 27

high-level, 91, 119 parallel I/O, 66-68,
Flowcharts

Least significant digit, 11 read, 41

program 92 105
Levels serial 1/0 cards, 59-64, ,

sprinkler control 136
interface voltage, 55 Tarbell cassette, 76-77,

Format
logic, 11, 23 Operations

74Byte/ Lancaster
Load, relay, 131 logic, 3,

Kansas City 79
Loading, logic, 32 pseudo, 108-109,

FORTRAN 119
Loads Operators, logic, 14,

FRDY line 37
ac, 131 Options, 88-PCI, 130-131,

Frequency modulation 81
dc, 131 OR, 14, ,

Functions
Locations, symbolic, 108 Organization, program, 105

bus pin 33-38 Logic, three-state, 32 Output equipment, 5,
Logic operators combining 15combined 1/0 68-70 , ,,
Loss power 18

panel switch 37-38
, ,

,
Packages, IC, 31
Panel

front, 37
Games, computer, 121 Machine cycles, types of, 10 switches, 37
Gate, logic, 15, 23 Master-slave, 27 Parity bit, 95
Generation, video display, 126 Mathematics, binary, It, 13 Pascal, Blaise, 1
Guidelines Memories PDBIN line, 37

IC use, 31-32 disk, 71 PHLDA line, 36
system troubleshooting, 139 magnetic, 40, 71 PHOLD line, 37

tape, 71 PIA, 6820, 64
Memory, computer, 5, 40 PINT line, 37

error 144-146Messages 107 PINTE line 36Hex (see numbers, hexadecimal)
, , , ,

Microcomputer, 3 POC line, 37
Microprocessor, 6 Ports, 56
Mini floppy, 86 Power lines, 36

Imsai 8080, 6 Mnemonics, instruction, 91 Powers of ten, 11-12
Initialization, system, 45, 110, 119 Mode, monitor, 117 PRDY line, 36-37
Input equipment, 5 Model, 8080A programming, 93 PRESET line, 37
Installation, 88-AD/DA board, 124 Monitor Printer, 54, 89-90
Instructions, 8080A, 91, 95-102 assembly code, 110 electrostatic, 89
Insulators, 17 lawn moisture, 137 impact, 89
Integrated circuit, 3, 23 system, 107, 109, 117 thermal, 89
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Problems, software, 144 Response, isolator frequency, 133 Tape, magnetic, 73
Program ROM, 41, 43, 45 Technology, solid-state, 19

addition example, 92-93 RTC line, 36 Terminal, CRT, 54
cassette input, 76 Rules, Boolean algebra, 16 Terminology, memory, 40-41
cassette output, 75 RUN line, 36 Tests
echo, 103 basic system, 140
source, 95 I/O, 140
utility, 119 memory, 140

Schottky low power 24Program counter, 7, 93 , ,
Time

Sectors disk 88Program generation, 102 , , access, 41
Semiconductors 17Programming , cycle, 41

assembly language, 91 SHLTA line, 36 data transfer, 74
Signalsmachine language, 91 Timing, refresh, 43

CPU bus 38PROM, 49 , Toggling, 27
8080A, 91 memory card, 43 Tracks, disk, 88

printer control 89-90Programs
, Transistors

Sign bit 9588-ACR, 84-86 , bipolar, 20
SINITA line 37application, 118 , field-effect, 21-22
SINP line 36terminal interface, 103 , first 2
Size memory 41

,
PROM, 41, 45, 48-49

,,
Translation, code, 107

SMI line 36PROT line, 37 ,
Triacs, 22

SMEMR line 36PS line, 37 , Troubleshooting, 139
Software relay control 134-135PSYNC line, 37 , , TTL 55
SOUT line 36

,
PWAIT line, 36 ,

TTY, 55
Spare lines 36PWR line, 37 ,
Speed, printing, 89
Speed-up, optoisolator, 133
SS line 36 UART, 55

RAM, 40
,

SSTACK line 37 UART, 6850, 61-64
RAM 2102 42-43

,
, ,

SSWDSB line 36 UNPROT line, 36
RAMs

,
Stack 7 93 USART, 55

disadvantages of, 43
, ,

Stack pointer 7 93 USART, 8251, 56-58
dynamic, 41-42

, ,
Stepped reconner 2 USRT, 55

static 41
,

,
Storage

Rates, data, 54
relay loadRating 130

paper-tape, 40, 71-72
,,

peripheral 71
Reader paper-tape 72

,
Values, truth, 14, ,

program 71
paper-tape 72-73Reader/punch

,
Vectoring 45,,

STSTB line 36
,

Recorder
,

Voltage 17
Subroutines 94

,
computer control of, 78-79

,
Voltage

monitor 117
tape, 73

,
ac, 17

Switching bank 52Rectifier 19
, ,

dc 17-18,
SWO line 37

,
Rectifies, silicon-controlled, 22

,
von Leibnitz Gottfried 1-2

Symbols programming 92
, ,

Refresh RAM 42 , ,, ,
Sync byte 75Register

,
Synchronous 54recirculating, shift, 29 ,

WAIT state 51 129shift, 29 , ,
Word memory 40Registers, 8080A, 7, 93

,,

Relays, control, 129 Table
Resistance, 17 excitation, 26
Resistors, 18 transition, 25 Zero bit, 95




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271

